A solution is proposed to surpass the inconvenience caused by the corrosion of stainless steel implants in human body fluids by protection with thin films of bioactive glasses or with composite polymer-bioactive glass nanostructures. Our option was to apply thin film deposition by matrix-assisted pulsed laser evaporation (MAPLE) which, to the difference to other laser or plasma techniques insures the protection of a more delicate material (a polymer in our case) against degradation or irreversible damage. The coatings composition, modification and corrosion resistance were investigated by FTIR and electrochemical techniques, under conditions which simulate their biological interaction with the human body. Mechanical testing demonstrates the adhesion, durability and resistance to fracture of the coatings. The coatings biocompatibility was assessed by in vitro studies and by flow cytometry. Our results support the unrestricted usage of coated stainless steel as a cheap alternative for human implants manufacture. They will be more accessible for lower prices in comparison with the majority present day fabrication of implants using Ti or Ti alloys.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-015-5527-yDOI Listing

Publication Analysis

Top Keywords

stainless steel
12
human body
8
steel surface
4
surface biofunctionalization
4
biofunctionalization pmma-bioglass
4
coatings
4
pmma-bioglass coatings
4
coatings compositional
4
compositional electrochemical
4
electrochemical corrosion
4

Similar Publications

Pathogen contamination and harborage in low-moisture food (LMF) processing environments have resulted in outbreaks and recalls, but researchers are limited in their abilities to investigate solutions. Methods used in most laboratory studies do not accurately reflect the route of contamination or harborage of pathogens in LMF environments, which complicates studying of sanitation methods. Inoculation methods were compared to establish low-moisture food persistent bacterial populations (LMF PBPs) that realistically reflect populations found in LMF environments.

View Article and Find Full Text PDF

Cold atmospheric plasma (CAP) has emerged as a promising technology for neutralizing microbes, including multidrug-resistant strains. This study investigates CAP's potential as an alternative to traditional antimicrobial drugs for microbial inactivation. In the era of increasing antimicrobial resistance, there is a persistent need for alternative antimicrobial strategies.

View Article and Find Full Text PDF

Harmless and efficient nickel enrichment from nickel-containing waste slag using vitrification technology.

Environ Sci Pollut Res Int

January 2025

Qingdao Qingli Environmental Protectionquipmen Co, LTD, Jiaozhou, 266300, China.

With the growing demand for nickel in the stainless steel and battery industries, conventional methods of extracting nickel from ores face challenges such as high production costs and environmental concerns. This study proposes a new process for the recovery of nickel metal and the production of nickel-iron alloys from nickel-bearing scrap. The reduction rates of nickel and iron oxides were investigated by optimizing the roasting temperature, time, and C/O ratio, and the process was optimized using response surface methodology (RSM).

View Article and Find Full Text PDF

Manufacturing of Liposomes Using a Stainless-Steel Microfluidic Device: An Investigation into Design of Experiments.

Langmuir

January 2025

Department of Polymer and Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, P.O. Box 1983969411 Tehran, Iran.

Liposomes are highly beneficial nanocarrier systems due to their biocompatibility, low toxicity, and exceptional inclusiveness, which lead to improved drug bioavailability. For biological applications, accurate control over these nanoparticles' mean size and size distribution is essential. Micromixers facilitate the continuous production of liposomes, enhancing the precision of size regulation and reproducibility.

View Article and Find Full Text PDF

One area of technological advancement has been the shift from stainless steel hand tools to nickel-titanium (Ni-Ti) rotary tools. This paper aims to perform an in vitro comparative study to evaluate the efficacy of five endodontic manual and rotary instruments such as Kerr files, Orodeka Plex V, ProTaper Flydent NiTi super files, and ProTaper Flydent NiTi super files in combination with an ultrasonic endodontic E3D Diamantata EMS scaler used for root canal shaping. The following aspects were highlighted: effective removal of smear layer (SL) from the dentinal tubules in the coronal 1/3, middle 1/3, and apical 1/3 of the root canal, appearance of cracks in the dentinal walls by SEM analysis, and highlighting of dentin mineral content and remnant debris by EDX analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!