More complete brain cancer resection can prolong survival and delay recurrence. However, it is challenging to distinguish cancer from noncancer tissues intraoperatively, especially at the transitional, infiltrative zones. This is especially critical in eloquent regions (for example, speech and motor areas). This study tested the feasibility of label-free, quantitative optical coherence tomography (OCT) for differentiating cancer from noncancer in human brain tissues. Fresh ex vivo human brain tissues were obtained from 32 patients with grade II to IV brain cancer and 5 patients with noncancer brain pathologies. On the basis of volumetric OCT imaging data, pathologically confirmed brain cancer tissues (both high- and low-grade) had significantly lower optical attenuation values at both cancer core and infiltrated zones when compared with noncancer white matter, and OCT achieved high sensitivity and specificity at an attenuation threshold of 5.5 mm(-1) for brain cancer patients. We also used this attenuation threshold to confirm the intraoperative feasibility of performing in vivo OCT-guided surgery using a murine model harboring human brain cancer. Our OCT system was capable of processing and displaying a color-coded optical property map in real time at a rate of 110 to 215 frames per second, or 1.2 to 2.4 s for an 8- to 16-mm(3) tissue volume, thus providing direct visual cues for cancer versus noncancer areas. Our study demonstrates the translational and practical potential of OCT in differentiating cancer from noncancer tissue. Its intraoperative use may facilitate safe and extensive resection of infiltrative brain cancers and consequently lead to improved outcomes when compared with current clinical standards.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482228 | PMC |
http://dx.doi.org/10.1126/scitranslmed.3010611 | DOI Listing |
Bioconjug Chem
January 2025
Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
Nanobodies play an increasingly prominent role in cancer imaging and therapy. However, their efficacy is often constrained by inadequate tumor penetration and rapid clearance from the bloodstream, particularly in brain tumors due to the intractable blood-brain barrier (BBB). Glycosylation is a favorable strategy for modulating the biological functions of nanobodies, including permeability and pharmacokinetics, but it also leads to heterogeneous glycan structures, which affect the targeting ability, stability, and quality of nanobodies.
View Article and Find Full Text PDFINhibitor of Growth (ING1-5) proteins are epigenetic readers that target histone acetyltransferase (HAT) or histone deacetylase (HDAC) complexes to the H3K4Me3 mark of active transcription. ING5 targets Moz/Morf and HBO1 HAT complexes that alter acetylation of H3 and H4 core histones, affecting gene expression. Previous experiments in vitro indicated that ING5 functions to maintain stem cell character in normal and in cancer stem cells.
View Article and Find Full Text PDFCurr Treat Options Oncol
January 2025
Breast Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
Breast cancer metastasizing to the central nervous system (CNS) encompasses two distinct entities: brain metastases involving the cerebral parenchyma and infiltration of the leptomeningeal space, i.e., leptomeningeal disease.
View Article and Find Full Text PDFEur J Epidemiol
January 2025
Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, 800 E. Leigh St., Suite 100, Richmond, VA, 23298, USA.
Cigarette smoking is associated with numerous differentially-methylated genomic loci in multiple human tissues. These associations are often assumed to reflect the causal effects of smoking on DNA methylation (DNAm), which may underpin some of the adverse health sequelae of smoking. However, prior causal analyses with Mendelian Randomisation (MR) have found limited support for such effects.
View Article and Find Full Text PDFCurr Neurol Neurosci Rep
January 2025
Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, Montpellier, 34295, France.
Purpose Of Review: In low-grade glioma (LGG), besides the patient's neurological status and tumor characteristics on neuroimaging, current treatment guidelines mainly rely on the glioma's genetics at diagnosis to define therapeutic strategy, usually starting with surgical resection. However, this snapshot in time does not take into account the antecedent period of tumor progression and its interactions with the brain before presentation. This article reviews new concepts that pertain to reconstruct the history of previous interplay between the LGG's course and adaptive changes in the connectome within which the glioma is embedded over the years preceding the diagnosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!