The variations of aluminium species in mountainous forest soils and its implications to soil acidification.

Environ Sci Pollut Res Int

Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague, Czech Republic.

Published: November 2015

Aluminium (Al) speciation is a characteristic that can be used as a tool for describing the soil acidification process. The question that was answered is how tree species (beech vs spruce) and type of soil horizon affect Al speciation. Our hypotesis is that spruce and beech forest vegetation are able to modify the chemical characteristics of organic horizon, hence the content of Al species. Moreover, these characteristics are seasonally dependent. To answer these questions, a detailed chromatographic speciation of Al in forest soils under contrasting tree species was performed. The Jizera Mountains area (Czech Republic) was chosen as a representative mountainous soil ecosystem. A basic forestry survey was performed on the investigated area. Soil and precipitation samples (throughfall, stemflow) were collected under both beech and spruce stands at monthly intervals from April to November during the years 2008-2011. Total aluminium content and Al speciation, pH, and dissolved organic carbon were determined in aqueous soil extracts and in precipitation samples. We found that the most important factors affecting the chemistry of soils, hence content of the Al species, are soil horizons and vegetation cover. pH strongly affects the amount of Al species under both forests. Fermentation (F) and humified (H) organic horizons contain a higher content of water extractable Al and Al(3+) compared to organo-mineral (A) and mineral horizons (B). With increasing soil profile depth, the amount of water extractable Al, Al(3+) and moisture decreases. The prevailing water-extractable species of Al in all studied soils and profiles under both spruce and beech forests were organically bound monovalent Al species. Distinct seasonal variations in organic and mineral soil horizons were found under both spruce and beech forests. Maximum concentrations of water-extractable Al and Al(3+) were determined in the summer, and the lowest in spring.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-015-4855-2DOI Listing

Publication Analysis

Top Keywords

spruce beech
12
soil
9
species
8
forest soils
8
soil acidification
8
tree species
8
beech spruce
8
content species
8
precipitation samples
8
soil horizons
8

Similar Publications

Understanding the deterioration processes in wooden artefacts is essential for accurately assessing their conservation status and developing effective preservation strategies. Advanced imaging techniques are currently being explored to study the impact of chemical changes on the structural and mechanical properties of wood. Nonlinear optical modalities, including second harmonic generation (SHG) and two-photon excited fluorescence (TPEF), combined with fluorescence lifetime imaging microscopy (FLIM), offer a promising non-destructive diagnostic method for evaluating lignocellulose-based materials.

View Article and Find Full Text PDF

Germany experienced extreme drought periods in 2018 and 2022, which significantly affected forests. These drought periods were natural experiments, providing valuable insights into how different tree species respond to drought. The quantification of species-specific drought responses may help to identify the most climate-change-resilient tree species, thereby informing effective forest regeneration strategies.

View Article and Find Full Text PDF

Contrasting the soil-plant hydraulics of beech and spruce by linking root water uptake to transpiration dynamics.

Tree Physiol

December 2024

Dept. of Civil, Environmental and Geomatic Engineering ETH Zürich, Zürich, Switzerland.

Tree water status is mainly determined by the amount of water taken up from roots and lost through leaves by transpiration. Variations in transpiration and stomatal conductance, are often related to atmospheric conditions and leaf water potential. Yet, few experimental datasets exist, that enable relating leaf water potential and transpiration dynamics to temporal variation of root water uptake from different depths during soil drying.

View Article and Find Full Text PDF
Article Synopsis
  • Key European tree species are predicted to shrink their habitats due to climate change, highlighting the importance of assessing other native species that can take over their ecological roles.
  • The study evaluated 20 temperate forest tree species in Europe, categorizing them into non-threatened, partially threatened, and most threatened groups based on projected range shifts by 2041-2060 and 2061-2080 under various climate scenarios.
  • Findings suggest that certain functional traits of trees, like height and leaf characteristics, influence how much their ranges might contract, with significant declines expected for some species sooner than previously anticipated.
View Article and Find Full Text PDF

The ongoing climate change calls for managing forest ecosystems in temperate regions toward more drought-resistant and climate-resilient stands. Yet ecological consequences of management options such as planting non-native tree species and mixing coniferous and deciduous tree species have been little studied, especially on soil animal communities, key in litter decomposition and pest control. Here, we investigated the taxonomic and trophic structure of soil macrofauna communities in five forest types including native European beech (), range-expanding Norway spruce () and non-native Douglas fir () as well as conifer-beech mixtures across loamy and sandy sites in northern Germany.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!