Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sleep deprivation (SD) has been associated with memory impairment through induction of oxidative stress. Melatonin, which promotes the metabolism of many reactive oxygen species (ROS), has antioxidant and neuroprotective properties. In this study, the effect of melatonin on memory impairment induced by 4 weeks of SD was investigated using rat animal model. Animals were sleep deprived using modified multiple platform model. Melatonin was administered via oral gavage (100 mg/kg/day). Spatial learning and memory were assessed using the radial arm water maze (RAWM). Changes in oxidative stress biomarkers in the hippocampus following treatments were measured using ELISA procedure. The result revealed that SD impaired both short- and long-term memory (P < 0.05). Use of melatonin prevented memory impairment induced by SD. Furthermore, melatonin normalized SD-induced reduction in the hippocampus activity of catalase, glutathione peroxidase (GPx), and superoxide dismutase (SOD). In addition, melatonin enhanced the ratio of reduced to oxidized glutathione GSH/GSSG in sleep-deprived rats (P < 0.05) without affecting thiobarbituric acid reactive substance (TBARS) levels (P > 0.05). In conclusion, SD induced memory impairment, which was prevented by melatonin. This was correlated with normalizing hippocampus antioxidant mechanisms during chronic SD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-015-9286-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!