Involvement of the heterodimeric interface region of the nucleotide binding domain-2 (NBD2) in the CFTR quaternary structure and membrane stability.

Biochim Biophys Acta

Centre National de la Recherche Scientifique (CNRS), LCBM-UMR 5249, Grenoble, France; Commissariat à l'Energie Atomique (CEA), DSV-iRTSV, Grenoble, France; Grenoble Alpes Université (GAU), Grenoble 1, France. Electronic address:

Published: October 2015

The cystic fibrosis transmembrane conductance regulator (CFTR) is the only member of the ATP-binding cassette (ABC) superfamily that functions as a chloride channel. The predicted structure of CFTR protein contains two membrane-spanning domains (MSDs), each followed by a nucleotide binding domain (NBD1 and NBD2). The opening of the Cl- channel is directly linked to ATP-driven tight dimerization of CFTR's NBD1 and NBD2 domains. The presence of a heterodimeric interfaces (HI) region in NBD1 and NBD2 generated a head to tail orientation necessary for channel activity. This process was also suggested to promote important conformational changes in the associated transmembrane domains of CFTR, which may impact the CFTR plasma membrane stability. To better understand the role of the individual HI region in this process, we generated recombinant CFTR protein with suppressed HI-NBD1 and HI-NBD2. Our results indicate that HI-NBD2 deletion leads to the loss of the dimerization profile of CFTR that affect its plasma membrane stability. We conclude that, in addition to its role in Cl- transport, HI-NBD2 domain confers membrane stability of CFTR by consolidating its quaternary structure through interactions with HI-NBD1 region.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2015.06.003DOI Listing

Publication Analysis

Top Keywords

membrane stability
16
nbd1 nbd2
12
nucleotide binding
8
cftr
8
quaternary structure
8
cftr protein
8
plasma membrane
8
involvement heterodimeric
4
heterodimeric interface
4
region
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!