A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prestress Driven Improvement in Fracture Behavior of in Situ Sputtered Zinc Oxide Thin Films on Stretched Polymer Substrates. | LitMetric

Flexible electronic devices need to survive bending or stretching operation without mechanical failure. If inorganic thin films are involved in the device structure, the evolution of cracks is a major challenge to overcome. Here, we report a novel way to substantially improve the fracture behavior of films that are based on intentional utilization of residual stress on the films by in situ sputtering on a stretched polymer substrate. The in situ sputtering combined with a stabilization stage yielded ZnO:Al thin films with a nearly 2-fold improvement in crack initiation strain, which indicates greater resistance to bending. The critical strain of the optimal ZnO:Al films was ∼1.83%, which is a significant improvement compared to the current tolerance value of ∼1%. This was accompanied by a ∼300% improvement in fracture energy. We attributed the improved fracture behavior to the presence of residual compressive stresses, which creates a barrier for crack formation by acting opposite to the applied bending strain.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b01836DOI Listing

Publication Analysis

Top Keywords

fracture behavior
12
thin films
12
improvement fracture
8
stretched polymer
8
situ sputtering
8
films
6
prestress driven
4
improvement
4
driven improvement
4
fracture
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!