In patients with metastatic colon cancer, response to first line chemotherapy is a strong predictor of overall survival (OS). Currently, oncologists lack diagnostic tests to determine which chemotherapy regimen offers the greatest chance for response in an individual patient. Here we present the results of gene expression analysis for two genes, ERCC1 and TS, measured with the commercially available ResponseDX: Colon assay (Response Genetics, Los Angeles, CA) in 41 patients with de novo metastatic colon cancer diagnosed between July 2008 and August 2013 at the University of California, San Diego. In addition ERCC1 and TS expression levels as determined by RNAseq and survival data for patients in TCGA were downloaded from the TCGA data portal. We found that patients with low expression of ERCC1 (n = 33) had significantly longer median OS (36.0 vs. 10.1 mo, HR 0.29, 95% CI .095 to .84, log-rank p = 9.0x10-6) and median time to treatment to failure (TTF) following first line chemotherapy (14.1 vs. 2.4 mo, HR 0.17, 95% CI 0.048 to 0.58, log-rank p = 5.3x10-4) relative to those with high expression (n = 4). After accounting for the covariates age, sex, tumor grade and ECOG performance status in a Cox proportional hazard model the association of low ERCC1 with longer OS (HR 0.18, 95% CI 0.14 to 0.26, p = 0.0448) and TTF (HR 0.16, 95% CI 0.14 to 0.21, p = 0.0053) remained significant. Patients with low TS expression (n = 29) had significantly longer median OS (36.0 vs. 14.8 mo, HR 0.25, 95% CI 0.074 to 0.82, log-rank p = 0.022) relative to those with high expression (n = 12). The combined low expression of ERCC1/TS was predictive of response in patients treated with FOLFOX (40% vs. 91%, RR 2.3, Fisher's exact test p = 0.03, n = 27), but not with FOLFIRI (71% vs. 71%, RR 1.0, Fisher's exact test p = 1, n = 14). Overall, these findings suggest that measurement of ERCC1 and TS expression has potential clinical utility in managing patients with metastatic colorectal cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4470586 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126898 | PLOS |
Cell Death Dis
January 2025
Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.
View Article and Find Full Text PDFOncol Res
December 2024
Clinical Oncology Unit, Careggi University Hospital, Florence, 50134, Italy.
Background: Platinum chemotherapy (CT) remains the backbone of systemic therapy for patients with small-cell lung cancer (SCLC). The nucleotide excision repair (NER) pathway plays a central role in the repair of the DNA damage exerted by platinum agents. Alteration in this repair mechanism may affect patients' survival.
View Article and Find Full Text PDFAging Cell
November 2024
Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Age-related macular degeneration (AMD) is a major cause of vision loss in older adults. AMD is caused by degeneration in the macula of the retina. The retina is the highest oxygen consuming tissue in our body and is prone to oxidative damage.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.
Alternative splicing (AS) generates protein diversity and is exploited by cancer cells to drive tumor progression and resistance to many cancer therapies, including chemotherapy. SNRPA is first identified as a spliceosome-related gene that potentially modulates resistance to platinum chemotherapy. Both the knockout or the knockdown of SNRPA via CRISPR/Cas9 and shRNA techniques can reverse the resistance of cisplatin-resistant lung adenocarcinoma (LUAD) cells to cisplatin.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!