The conformation of an N(2)-dG adduct arising from the heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), a potent food mutagen, was determined in 5'-d(C(1)T(2)C(3)X(4)G(5)C(6)G(7)C(8)C(9)A(10)T(11)C(12))-3':5'-d(G(13)A(14)T(15)G(16)G(17)C(18)G(19)C(20)C(21)G(22)A(23)G(24))-3'; X = N(2)-dG-IQ, in which the modified nucleotide X(4) corresponds to G(1) in the 5'-d(G(1)G(2)CG(3)CC)-3' NarI restriction endonuclease site. Circular dichroism (CD) revealed blue shifts relative to the unmodified duplex, consistent with adduct-induced twisting, and a hypochromic effect for the IQ absorbance in the near UV region. NMR revealed that the N(2)-dG-IQ adduct adopted a base-displaced intercalated conformation in which the modified guanine remained in the anti conformation about the glycosidic bond, the IQ moiety intercalated into the duplex, and the complementary base C(21) was displaced into the major groove. The processing of the N(2)-dG-IQ lesion by hpol η is sequence-dependent; when placed at the reiterated G(3) position, but not at the G(1) position, this lesion exhibits a propensity for frameshift replication [Choi, J. Y., et al. (2006) J. Biol. Chem., 281, 25297-25306]. The structure of the N(2)-dG-IQ adduct at the nonreiterated G(1) position was compared to that of the same adduct placed at the G(3) position [Stavros, K. M., et al. (2014) Nucleic Acids Res., 42, 3450-3463]. CD indicted minimal spectral differences between the G(1) vs G(3) N(2)-dG-IQ adducts. NMR indicated that the N(2)-dG-IQ adduct exhibited similar base-displaced intercalated conformations at both the G(1) and G(3) positions. This result differed as compared to the corresponding C8-dG-IQ adducts placed at the same positions. The C8-dG-IQ adduct adopted a minor groove conformation when placed at position G(1) but a base-displaced intercalated conformation when placed at position G(3) in the NarI sequence. The present studies suggest that differences in lesion bypass by hpol η may be mediated by differences in the 3'-flanking sequences, perhaps modulating the ability to accommodate transient strand slippage intermediates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511292 | PMC |
http://dx.doi.org/10.1021/acs.chemrestox.5b00140 | DOI Listing |
Chem Res Toxicol
December 2023
Departments of Chemistry and Biochemistry, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States.
The genotoxic 3-(2-deoxy-β-D-erythro-pentofuranosyl)pyrimido[1,2-α]purin-10(3H)-one (MdG) DNA lesion arises from endogenous exposures to base propenals generated by oxidative damage and from exposures to malondialdehyde (MDA), produced by lipid peroxidation. Once formed, MdG may oxidize, , to 3-(2-deoxy-β-D-erythropentofuranosyl)-pyrimido[1,2-]purine-6,10(3,5)-dione (6-oxo-MdG). The latter blocks DNA replication and is a substrate for error-prone mutagenic bypass by the Y-family DNA polymerase hpol η.
View Article and Find Full Text PDFInt J Mol Sci
December 2022
Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA.
DNA helicase unwinding activity can be inhibited by small molecules and by covalently bound DNA lesions. Little is known about the relationships between the structural features of DNA lesions and their impact on unwinding rates and processivities. Employing RecQ helicase as a model system, and various conformationally defined DNA lesions, the unwinding rate constants = , and processivities = (k) were determined ( unwinding rate constant; , helicase-DNA dissociation rate constant).
View Article and Find Full Text PDFDNA Repair (Amst)
December 2020
Chemistry Department, New York University, 100 Washington East, New York, NY, 10003-5180, USA. Electronic address:
The Nucleotide Excision Repair (NER) mechanism removes a wide spectrum of structurally different lesions that critically depend on the binding of the DNA damage sensing NER factor XPC-RAD23B (XPC) to the lesions. The bulky mutagenic benzo[a]pyrene diol epoxide metabolite-derived cis- and trans-B[a]P-dG lesions (G*) adopt base-displaced intercalative (cis) or minor groove (trans) conformations in fully paired DNA duplexes with the canonical C opposite G* (G*:C duplexes). While XPC has a high affinity for binding to these DNA lesions in fully complementary double-stranded DNA, we show here that deleting only the C in the complementary strand opposite the lesion G* embedded in 50-mer duplexes, fully abrogates XPC binding.
View Article and Find Full Text PDFChem Res Toxicol
October 2020
Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada.
Exposure to aristolochic acid I and II (AAI and AAII) has been implicated in aristolochic acid nephropathy and urothelial carcinoma. The toxicological effects of AAs are attributed to their ability to form aristolacatam (AL)-purine DNA adducts. Among these lesions, the AL-adenine (ALI-N-A and ALII-N-A) adducts cause the "signature" A → T transversion mutations associated with AA genotoxicity.
View Article and Find Full Text PDFDNA Repair (Amst)
March 2020
Department of Biology, New York University, 100 Washington Square East, New York, NY, 10003, USA. Electronic address:
The packaging of DNA in nucleosomes presents a barrier for biological transactions including replication, transcription and repair. However, despite years of research, how the DNA is freed from the histone proteins and thereby allows the molecular machines to access the DNA remains poorly understood. We are interested in global genomic nucleotide excision repair (GG-NER).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!