Metals can be strengthened by adding hard reinforcements, but such strategy usually compromises ductility and toughness. Natural nacre consists of hard and soft phases organized in a regular "brick-and-mortar" structure and exhibits a superior combination of mechanical strength and toughness, which is an attractive model for strengthening and toughening artificial composites, but such bioinspired metal matrix composite has yet to be made. Here we prepared nacre-like reduced graphene oxide (RGrO) reinforced Cu matrix composite based on a preform impregnation process, by which two-dimensional RGrO was used as "brick" and inserted into "□-and-mortar" ordered porous Cu preform (the symbol "□" means the absence of "brick"), followed by compacting. This process realized uniform dispersion and alignment of RGrO in Cu matrix simultaneously. The RGrO-and-Cu artificial nacres exhibited simultaneous enhancement on yield strength and ductility as well as increased modulus, attributed to RGrO strengthening, effective crack deflection and a possible combined failure mode of RGrO. The artificial nacres also showed significantly higher strengthening efficiency than other conventional Cu matrix composites, which might be related to the alignment of RGrO.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5b01067DOI Listing

Publication Analysis

Top Keywords

matrix composite
12
preform impregnation
8
impregnation process
8
metal matrix
8
alignment rgro
8
artificial nacres
8
rgro
6
matrix
5
graphene-and-copper artificial
4
artificial nacre
4

Similar Publications

Mechanical Wear of Degraded Articular Cartilage.

Ann Biomed Eng

January 2025

School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Purpose: To evaluate the mechanical wear of cartilage with different types of degradation.

Methods: Bovine osteochondral explants were treated with interleukin-1β (IL-1β) to mimic inflammatory conditions, with chondroitinase ABC (ChABC) to specifically remove glycosaminoglycans (GAGs), or with collagenase to degrade the collagen network during 5 days of culture. Viscoelastic properties of cartilage were characterized via indentation.

View Article and Find Full Text PDF

Effects of different water and fertilizer treatments on the matrix properties and plant growth of tailings waste.

Sci Rep

January 2025

Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China.

Vegetation ecological restoration technology is widely regarded as an environmentally sustainable and green technology for the remediation of mineral waste. The appropriate ratio of amendments can improve the substrate environment for plant growth and increase the efficiency of ecological restoration. Herbs and shrubs are preferred for vegetation restoration in abandoned mines because of their rapid establishment and easy management.

View Article and Find Full Text PDF

The electrical conductivity and antibacterial properties are crucial characteristics for bacterial cellulose (BC) based membranes to be broadly applied in the field of wearable electronics. In the study, to achieve these aims, alpha-lipoic acid (LA) was utilized as anchoring groups and reducing agent, hydroxypropyl-β-cyclodextrin (HP-β-CD) capped magnetic particles (FeO NPs) and the in-situ formed silver nanoparticles (AgNPs) were sequentially incorporated into the BC matrix to fabricate BC based nanocomposite membranes (HP-β-CD/FeO/LA@BC and HP-β-CD/FeO/LA/Ag@BC). Fourier transform attenuated total reflectance infrared spectroscopy (FTIR-ATR) and field emission scanning electron microscopy (FE-SEM) analysis proved the dense networks were formed in the modified BC membranes.

View Article and Find Full Text PDF

Intercellular communication is fundamental to multicellular life and a core determinant of outcomes during viral infection, where the common goals of virus and host for persistence and replication are generally at odds. Hosts rely on encoded innate and adaptive immune responses to detect and clear viral pathogens, while viruses can exploit or disrupt these pathways and other intercellular communication processes to enhance their spread and promote pathogenesis. While virus-induced signaling can result in systemic changes to the host, striking alterations are observed within the cellular microenvironment directly surrounding a site of infection, termed the virus microenvironment (VME).

View Article and Find Full Text PDF

A systematic study on composition and antioxidant of 6 varieties of highbush blueberries by 3 soil matrixes in China.

Food Chem

January 2025

Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, Changchun, Jilin 130118, China; College of Horticulture, Jilin Agricultural University, Changchun, Jilin 130118, China. Electronic address:

Blueberries are the most popular small berries, in order to solve the problem of unbalanced blueberry resources in different regions of China. In this study, 18 blueberries were analyzed by chromatography and mass spectrometry for 9 soil elements, 6 anthocyanins, 7 phenolic acids, 9 organic acids, and 12 flavonoids. The result showed that blueberry physico-chemical indicators were significantly variable across production regions by Wenn and volcano maps, chlorogenic acid, ascorbic acid, citric acid, catechin were the main antioxidant active components, soil pH was significantly correlated with low content of anthocyanins and organic acids, soil elements were not significantly correlated with fruits antioxidant activity by the network correlation analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!