Indigoid dyes are well known as vat dyes. In their oxidized dichetonic form they are stable and insoluble in water, whereas in their reduced form, commonly known as leuco, they are soluble in water and able to be attached to fabric for dyeing purposes. These blue dyes are usually easily detectable in art objects by means of Raman spectroscopy by adopting for analyses a laser line at a high wavelength, such as a 785 nm diode laser. Unfortunately, in ancient artworks, that are often highly degraded, it is not always possible to collect high quality Raman spectra, which makes the analysis and identification of these compounds particularly challenging. In this work, we present a tailor-made methodology for the extraction and the recognition of indigoid dyes in works of art, which exploits the solubility of these compounds in their reduced form. Excellent Raman and surface enhanced Raman spectroscopy (SERS) spectra of indigo were acquired after micro-extraction on ancient and reference textiles, confirming the reliability of the presented procedure. Moreover, the methodology has been applied also for the extraction of the indigoid dye Tyrian purple on a reference textile, showing excellent results. This analytical method has been found to be extremely safe both for the reference textiles and the investigated ancient textiles, thus being a promising procedure for the selective analysis and detection of indigoid compounds in objects of artistic relevance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-015-8816-xDOI Listing

Publication Analysis

Top Keywords

indigoid dyes
8
reduced form
8
raman spectroscopy
8
reference textiles
8
tailored micro-extraction
4
micro-extraction method
4
method raman/sers
4
raman/sers detection
4
detection indigoids
4
ancient
4

Similar Publications

The widespread use of synthetic dyes has led to the release of substantial amounts of dye-contaminated wastewater, posing significant environmental and health concerns. This study focuses on the use of anodic and electrochemically activated persulfate oxidation for the degradation of organic contaminants. Specifically, the structural variations of nine dyes in the indigoid and azo families, and their impact on the efficiency of electrochemical oxidation were analysed.

View Article and Find Full Text PDF

The importance of indigo dyes is constantly increasing with the evolution of novel textile materials and photochromic material technologies. The aim of this review article is to provide a comprehensive overview of the development of photochromic indigo derivatives from the first report on the photochromic -diacetylindigo in 1954 until now. We begin with the list of historical milestones in the development of photochromic indigo derivatives.

View Article and Find Full Text PDF

Discovery of New Phenylacetone Monooxygenase Variants for the Development of Substituted Indigoids through Biocatalysis.

Int J Mol Sci

October 2022

Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.

Indigoids are natural pigments obtained from plants by ancient cultures. Romans used them mainly as dyes, whereas Asian cultures applied these compounds as treatment agents for several diseases. In the modern era, the chemical industry has made it possible to identify and develop synthetic routes to obtain them from petroleum derivatives.

View Article and Find Full Text PDF

and its indigo dyes have already provided highly active anti-leukaemic lead compounds, with the focus mainly being on indirubin, whereas indigo itself is inactive. There are many more indigoids to find in this plant extract, for example, quingdainone, an indigoid derived from tryptanthrin. We present here a new synthesis of hitherto neglected substituted quingdainones, which is very necessary due to their poor solubility behaviour, and a structure-dependent anti-leukaemic activity study of a number of compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!