Design of drug with prolonged therapeutic action is one of the rapid developing fields of modern medical science and required implementation of different methods of protein chemistry and molecular biology. There are several therapeutic proteins needing increasing of their stability, pharmacokinetic, and pharmacodynamics parameters. To make long-live DNA-encoded drug PEGylation was proposed. Alternatively polysialic (colominic) acid, extracted from the cell wall of E. coli, fractionated to the desired size by anion-exchange chromatography and chemically activated to the amine-reactive aldehyde form, may be chemically attached to the polypeptide chain. Conjugates of proteins and polysialic acid generally resemble properties of protein-PEG conjugates, but possess significant negative net charge and are thought to be fully degradable after endocytosis due to the presence of intracellular enzymes, hydrolyzing the polysialic acid. Complete biodegradation of the polysialic acid moiety makes this kind of conjugates preferable for creation of drugs, intended for chronic use. Here, we describe two different protocols of chemical polysialylation. First protocol was employed for the CHO-derived human butyrylcholinesterase with optimized for recovery of specific enzyme activity. Polysialic acid moieties are attached at various lysine residues. Another protocol was developed for high-yield conjugation of human insulin; major conjugation point is the N-terminal residue of the insulin's light chain. These methods may allow to produce polysialylated conjugates of various proteins or polypeptides with reasonable yield and without significant loss of functional activity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-2760-9_26DOI Listing

Publication Analysis

Top Keywords

polysialic acid
16
chemical polysialylation
8
conjugates proteins
8
polysialic
5
acid
5
polysialylation recombinant
4
recombinant human
4
proteins
4
human proteins
4
proteins design
4

Similar Publications

Polysialic acid-based nanoparticles for enhanced targeting and controlled dexamethasone release in pulmonary inflammation treatment.

Int J Biol Macromol

January 2025

School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China; Liaoning Key Laboratory for New Drug Development, Shenyang 110036, China. Electronic address:

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening conditions characterized by severe inflammation and respiratory failure. Despite the use of dexamethasone (Dex) in treatment, challenges such as poor solubility and systemic side effects persist, highlighting the need for novel therapeutic approaches. This study introduces an innovative nanoparticle delivery system based on chitosan (CS) and polysialic acid (PSA), engineered via electrostatic assembly, to improve the targeted delivery of Dex to inflamed lung tissues.

View Article and Find Full Text PDF

In situ size amplification strategy reduces lymphatic clearance for enhanced arthritis therapy.

J Nanobiotechnology

December 2024

Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.

Rheumatoid arthritis (RA) is an autoimmune disorder characterized by painful swelling and inflammation, arising from the immune system attacking on healthy cells. However, arthritic sites often experience increased lymph flow, hastening drug clearance and potentially reducing treatment effectiveness. To address this challenge, an in situ size amplification has been proposed to reduce lymphatic clearance and thereby enhance arthritis therapy.

View Article and Find Full Text PDF

A key characteristic of trigeminal neuralgia (TN) is cytokine-enriched exudate and a "reactive oxygen species (ROS) storm" generated from the inflammatory cascade, resulting in demyelination of the sensory root of the trigeminal nerve, tissue swelling, and intense electric shock-like pain. The clinically approved drug carbamazepine (CBZ) is capable of inhibiting pain, reducing inflammatory factors, and alleviating oxidative stress, but its clinical application is restricted by its systemic toxicity. Herein, we developed an exudate-absorbing hydrogel incorporating polysialic acid (PSA) and CBZ (F127@PSA@CBZ) for on-demand TN treatment.

View Article and Find Full Text PDF

NCAM and attached polysialic acid affect behaviors of breast epithelial cells through differential signaling pathways.

Acta Biochim Biophys Sin (Shanghai)

October 2024

Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, School of Medicine, Northwest University, Xi'an 710069, China.

Neural cell adhesion molecule (NCAM), a common mammalian cell surface glycoprotein, is the major substrate of polysialic acid (polySia). Polysialylated NCAM occurs in many types of cancer, but rarely in normal adult tissues. The functional role of NCAM hypersialylation in the epithelial-mesenchymal transition (EMT) process remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!