Estrogenic chemicals are major contaminants of surface waters and can threaten the sustainability of natural fish populations. Characterization of the global molecular mechanisms of toxicity of environmental contaminants has been conducted primarily in model species rather than species with limited existing transcriptomic or genomic sequence information. We aimed to investigate the global mechanisms of toxicity of an endocrine disrupting chemical of environmental concern [17β-estradiol (E2)] using high-throughput RNA sequencing (RNA-Seq) in an environmentally relevant species, brown trout (Salmo trutta). We exposed mature males to measured concentrations of 1.94, 18.06, and 34.38 ng E2/l for 4 days and sequenced three individual liver samples per treatment using an Illumina HiSeq 2500 platform. Exposure to 34.4 ng E2/L resulted in 2,113 differentially regulated transcripts (FDR < 0.05). Functional analysis revealed upregulation of processes associated with vitellogenesis, including lipid metabolism, cellular proliferation, and ribosome biogenesis, together with a downregulation of carbohydrate metabolism. Using real-time quantitative PCR, we validated the expression of eight target genes and identified significant differences in the regulation of several known estrogen-responsive transcripts in fish exposed to the lower treatment concentrations (including esr1 and zp2.5). We successfully used RNA-Seq to identify highly conserved responses to estrogen and also identified some estrogen-responsive transcripts that have been less well characterized, including nots and tgm2l. These results demonstrate the potential application of RNA-Seq as a valuable tool for assessing mechanistic effects of pollutants in ecologically relevant species for which little genomic information is available.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4556936PMC
http://dx.doi.org/10.1152/physiolgenomics.00123.2014DOI Listing

Publication Analysis

Top Keywords

brown trout
8
mechanisms toxicity
8
relevant species
8
estrogen-responsive transcripts
8
identification conserved
4
conserved hepatic
4
hepatic transcriptomic
4
transcriptomic responses
4
responses 17β-estradiol
4
17β-estradiol high-throughput
4

Similar Publications

Cold-water fishes, such as Brook trout (Salvelinus fontinalis), are being challenged by the consequences of climate change. The ability of these fish to acclimate to warmer environmental conditions is vital to their survival. Acclimation to warmer water may allow brook trout to reduce the metabolic costs of higher temperatures.

View Article and Find Full Text PDF

The contribution of the gut to the ingestion, production, absorption, and excretion of the extra ammonia and urea-N associated with feeding ("exogenous" fraction) has received limited prior attention. Analysis of commercial pellet food revealed appreciable concentrations of ammonia and urea-N. Long term satiation-feeding increased whole trout ammonia and urea-N excretion rates by 2.

View Article and Find Full Text PDF

Near complete genome assembly of Yadong trout (Salmo trutta).

Sci Data

January 2025

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.

The Yadong trout (Salmo trutta), a species endemic to the Yatung River in Tibet, China, was classified as a second-class protected species in the 20th century. Now, it is considered one of the most important fishery resources in China. In this study, we assembled a near-complete genome of the S.

View Article and Find Full Text PDF

Background: Chronic rhinosinusitis (CRS) and olfactory dysfunction (OD) are prevalent disease complications in people with cystic fibrosis. These understudied comorbidities significantly impact quality of life. The impact of highly effective modulator therapy (HEMT) in young children with cystic fibrosis (YCwCF) on these disease complications is unknown.

View Article and Find Full Text PDF

Transient cognitive impacts of oxygen deprivation caused by catch-and-release angling.

Biol Lett

January 2025

Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, Kalmar 39231, Sweden.

Vertebrate brain function is particularly sensitive to the effects of hypoxia, with even brief periods of oxygen deprivation causing significant brain damage and impaired cognitive abilities. This study is the first to investigate the cognitive consequences of hypoxia in fish, specifically induced by exhaustive exercise and air exposure, conditions commonly encountered during catch-and-release (C&R) practices in recreational fishing. Angling exerts substantial pressure on inland fish populations, underscoring the need for sustainable practices like C&R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!