We used molecular dynamics simulations to investigate the effect of disorder of the hydroxylated amorphous silica surface on the structure of 8 nm IL films formed from two ionic liquids featuring the same cation 1-butyl-3-methyl-imidazolium or [BMIM], paired with bis(trifluoromethanesulphonyl)amide [NTF2] and tetrafluoroborate [BF4] anions. Several silica surfaces were modelled to estimate the effect of their atomic-scale configuration on the solid-liquid interface and the results are compared to those simulated on the crystalline cristobalite surface. Using strongly polar surfaces, we could also evaluate the response of the ILs to the electric field externally controlled or generated by charged defects in the silica film. We found that the structure of the liquids becomes weaker away from the interface and more susceptible to electric field. Our simulations show that [BMIM][BF4] has a large intrinsic dipole originating at the interface, resilient to external fields, while the polarisation of [BMIM][NTF2] can be more easily controlled.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp02299a | DOI Listing |
Lasers Med Sci
January 2025
Department of Physics, Shabestar Branch, Islamic Azad University, Shabestar, Iran.
In laser safety eyewear, due to the lack of complete blocking of ultraviolet and infrared rays, we proposed a structure based on one-dimensional multilayer composed of several layers of silicon dioxide and zirconium dioxide materials alternately behind polycarbonate lens. It is find out that the acceptance angle range to the photonic crystal is 0 to 39°. This incident angle range corresponds to the band gap of the photonic crystal.
View Article and Find Full Text PDFHeliyon
December 2024
The Petroleum and Petrochemical College, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
Glycerol, a by-product of biodiesel production through transesterification, presents an opportunity for biodiesel industries to transform surplus glycerol into high-value chemical products. This study focuses on the development of a series of propyl sulfonic acid functionalized (PrSOH) SBA-15 catalysts, synthesized by direct synthesis of 3-mercaptopropyltrimethoxysilane (MPTMS) and tetraethoxysilane (TEOS) in an acidic medium. The catalysts were evaluated for acetylation of glycerol with acetic acid under conditions optimized through response surface methodology.
View Article and Find Full Text PDFHeliyon
January 2025
BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000, Novi Sad, Serbia.
Glioblastoma multiforme (GBM) is a highly aggressive brain cancer associated with poor survival rates. We developed novel mesoporous silica nanoparticles (MSNs)-based nanocarriers for pH-responsive delivery of a therapeutic drug Paclitaxel (PTX) to GBM tumor cells. The pores of MSNs are loaded with PTX, which is retained by β-cyclodextrin (CD) moieties covalently linked to the pore entrances through a hydrazone linkage, which is cleavable in weakly acidic environment.
View Article and Find Full Text PDFHeliyon
January 2025
Infochemistry Scientific Center, ITMO University, Lomonosova str. 9, 191002, Saint Petersburg, Russia.
Synthetic hydroxyapatite (HA) materials with antibacterial and biocompatible properties have potential for biomedical applications. The application of various computational methods is highly relevant for the optimal development of modern materials. In this work, we used molecular docking to determine the binding constants of tetracycline (TET) and quercetin (QUE) with hydroxyapatite and compared them to experimental data of the adsorption of tetracycline (TET) and quercetin (QUE) on the HA surface.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
Ammonium-ion hybrid supercapacitors (AIHSCs) have gained extensive attention due to their high safety and environmental friendliness. Manganese oxides are among the most promising cathode materials; however, the side electrochemical reactions occurring in aqueous electrolytes limit their reversible capacities and energy densities. This work prepares the β-/γ-MnO electrode and reveals the side electrochemical reactions occurring in the (NH)SO electrolyte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!