A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Superbackscattering nanoparticle dimers. | LitMetric

Superbackscattering nanoparticle dimers.

Nanotechnology

Electrical and Electronic Engineering Department,Universidad Pública de Navarra, Campus Arrosadía, Pamplona, E-31006, Spain.

Published: July 2015

The theory and design of superbackscattering nanoparticle dimers are presented. We analytically derive the optimal configurations and the upper bound of their backscattering cross-sections. In particular, it is demonstrated that electrically small nanoparticle dimers can enhance the backscattering by a factor of 6.25 with respect to single dipolar particles. We demonstrate that optimal designs approaching this theoretical limit can be found by using a simple circuit model. The study of practical implementations based on plasmonic and high-permittivity particles has been also addressed. Moreover, the numerical examples reveal that the dimers can attain close to a fourfold enhancement of the single nanoparticle response even in the presence of high losses.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/26/27/274001DOI Listing

Publication Analysis

Top Keywords

nanoparticle dimers
12
superbackscattering nanoparticle
8
dimers
4
dimers theory
4
theory design
4
design superbackscattering
4
dimers presented
4
presented analytically
4
analytically derive
4
derive optimal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!