[Application of spatial relative risk estimation in communicable disease risk evaluation].

Zhonghua Liu Xing Bing Xue Za Zhi

Center for Disease Surveillance and Information Services, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Email:

Published: May 2015

This paper summaries the application of adaptive kernel density algorithm in the spatial relative risk estimation of communicable diseases by using the reported data of infectious diarrhea (other than cholera, dysentery, typhoid and paratyphoid) in Ludian county and surrounding area in Yunnan province in 2013. Statistically significant fluctuations in an estimated risk function were identified through the use of asymptotic tolerance contours, and finally these data were visualized though disease mapping. The results of spatial relative risk estimation and disease mapping showed that high risk areas were in southeastern Shaoyang next to Ludian. Therefore, the spatial relative risk estimation of disease by using adaptive kernel density algorithm and disease mapping technique is a powerful method in identifying high risk population and areas.

Download full-text PDF

Source

Publication Analysis

Top Keywords

spatial relative
16
relative risk
16
risk estimation
16
disease mapping
12
risk
8
estimation communicable
8
adaptive kernel
8
kernel density
8
density algorithm
8
estimation disease
8

Similar Publications

Cerebral perfusion correlates with amyloid deposition in patients with mild cognitive impairment due to Alzheimer's disease.

J Prev Alzheimers Dis

February 2025

Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China, 154 Anshan Road Tianjin 300052, PR China; Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin 300052, PR China. Electronic address:

Background: Changes in cerebral blood flow (CBF) may contribute to the initial stages of the pathophysiological process in patients with Alzheimer's disease (AD). Hypoperfusion has been observed in several brain regions in patients with mild cognitive impairment (MCI). However, the clinical significance of CBF changes in the early stages of AD is currently unclear.

View Article and Find Full Text PDF

Digital Profiling of Immune Biomarkers in Breast Cancer: Relation to Anthracycline Benefit.

Mod Pathol

January 2025

Interdisciplinary Oncology, University of British Columbia, Vancouver, BC, Canada; MAPcore, University of British Columbia, Vancouver, BC, Canada. Electronic address:

Assessment of the tumor immune microenvironment can be used as a prognostic tool for improved survival and as a predictive biomarker for treatment benefit, particularly from immune modulating treatments including cytotoxic chemotherapy. Using Digital Spatial Profiling (DSP), we studied the tumor immune microenvironment of 522 breast cancer cases by quantifying 35 immune biomarkers on tissue microarrays from the MA.5 phase III clinical trial.

View Article and Find Full Text PDF

Clinical motion analysis plays an important role in the diagnosis and treatment of mobility-limiting diseases. Within this assessment, relative (point-to-point) tracking of extremities could benefit from increased accuracy. Given the limitations of current wearable sensor technology, supplementary spatial data such as distance estimates could provide added value.

View Article and Find Full Text PDF

Existing autonomous driving systems face challenges in accurately capturing drivers' cognitive states, often resulting in decisions misaligned with drivers' intentions. To address this limitation, this study introduces a pioneering human-centric spatial cognition detecting system based on drivers' electroencephalogram (EEG) signals. Unlike conventional EEG-based systems that focus on intention recognition or hazard perception, the proposed system can further extract drivers' spatial cognition across two dimensions: relative distance and relative orientation.

View Article and Find Full Text PDF

In recent years, mobile laser measurement systems have markedly enhanced the capabilities of deformation detection and defect identification within metro tunnels, attributed to their superior efficiency, precision, and versatility. Nevertheless, challenges persist, including substantial equipment costs, inadequate after-sales support, technological barriers, and limitations in customization. This paper develops a mobile laser measurement system that has been specifically developed for the purpose of detecting deformation in metro tunnels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!