Objective: To investigate the secondary metabolites from Penicillium raistrickii.

Methods: Compounds were isolated and purified by normal and reverse phase silica gel, Sephadex LH-20 gel column chromatography and RP-HPLC. Their structures were established by means of spectral techniques and physicochemical properties.

Results: Twelve compounds were identified as pestafolide A(II), 3-methoxy-4-methyl-2,4-dien-pentanoic acid (2),p-hydroxy phenylacetamide (3),2-(2-hydroxy propanamido) benzamide (4), nicotinic acid (5), thymine (6), uracil (7) cyclo (Gly-Ala) (8), (22E,24R)-3β,5α,9α-trihydroxy ergosta-7,22-diene-6-one (9), cerevisterol (10), ergosterol (11) and ergosterol peroxide (12).

Conclusion: All compounds are isolated from Penicillium raistrickii for the first time.

Download full-text PDF

Source

Publication Analysis

Top Keywords

metabolites penicillium
8
compounds isolated
8
[secondary metabolites
4
penicillium raistrickii]
4
raistrickii] objective
4
objective investigate
4
investigate secondary
4
secondary metabolites
4
penicillium raistrickiimethods
4
raistrickiimethods compounds
4

Similar Publications

A Chinese isolate of the fungus Penicillium chrysogenum was analyzed using liquid chromatography coupled with Q-Exactive Orbitrap mass spectrometry combined with Global Natural Products Social Networking (GNPS) on culture condition leading to the rapid identification of 20 secondary metabolites. Among them are eight polyketones, two phthalides, six diketopiperazine alkaloids, and others. A meleagrine network was examined and proposed as a promising candidate for new natural products.

View Article and Find Full Text PDF

Regulation of Histone Acetylation Modification on Biosynthesis of Secondary Metabolites in Fungi.

Int J Mol Sci

December 2024

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

The histone acetylation modification is a conservative post-translational epigenetic regulation in fungi. It includes acetylation and deacetylation at the lysine residues of histone, which are catalyzed by histone acetyltransferase (HAT) and deacetylase (HDAC), respectively. The histone acetylation modification plays crucial roles in fungal growth and development, environmental stress response, secondary metabolite (SM) biosynthesis, and pathogenicity.

View Article and Find Full Text PDF

Introduction: Pharmacological studies have shown that the rhizome of Atractylodes macrocephala Koidz. (Compositae), commonly known as atractylodes macrocephala rhizome (AMR), can modulate immunity. Nevertheless, its resources have been largely depleted, and the pharmacological activity of artificial AMR is relatively modest.

View Article and Find Full Text PDF

Untargeted metabolomics to relate changes produced by biocontrol agents against Aspergillus westerdijkiae and Penicillium nordicum in vitro on dry-cured ham.

Int J Food Microbiol

December 2024

Higiene y Seguridad Alimentaria, Instituto de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain.

Dry-cured ham is a highly appreciated meat product. During the ripening, moulds grow on its surface such as Penicillium nordicum and Aspergillus westerdijkiae producers of ochratoxin A (OTA). This mycotoxin poses a risk to consumers that must be controlled.

View Article and Find Full Text PDF

Quinazolinone nitriles and related metabolites from the deep-sea-derived fungus MCCC 3A00265.

Org Biomol Chem

December 2024

Hainan Pharmaceutical Research and Development Science Park, Hainan Academy of Medical Sciences, Hainan Medical University, No. 3 Xueyuan Road, Haikou 571199, China.

Two new quinazolinone nitriles (1 and 2) and one new indole alkaloid (3), together with 13 known compounds, were isolated from the deep-sea-derived MCCC 3A00265. Their structures were determined by extensive spectroscopic analysis, with the absolute configurations established by comparing experimental and calculated electronic circular dichroism (ECD) and optical rotation (OR) data as well as biogenetic considerations. Viricyanoamides A and B (1 and 2) are the sole representatives of quinazolinones featuring a nitrile group, while solitumidine F (3) incorporates a rare pyrrolidinedione unit as an indole terpenoid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!