DNA vaccination is effective in inducing potent immunity in mice; however it appears to be less so in large animals. Increasing the dose of DNA plasmid to activate innate immunity has been shown to improve DNA vaccine adaptive immunity. Retinoic acid-inducible gene I (RIG-I) is a critical cytoplasmic double-stranded RNA pattern receptor required for innate immune activation in response to viral infection. RIG-I recognise viral RNA and trigger antiviral response, resulting in type I interferon (IFN) and inflammatory cytokine production. In an attempt to enhance the antibody response induced by BVDV DNA in cattle, we expressed BVDV truncated E2 (E2t) and NS3 codon optimised antigens from antibiotic free-plasmid vectors expressing a RIG-I agonist and designated either NTC E2t(co) and NTC NS3(co). To evaluate vaccine efficacy, groups of five BVDV-free calves were intramuscularly injected three times with NTC E2t(co) and NTC NS3(co) vaccine plasmids individually or in combination. Animals vaccinated with our (previously published) conventional DNA vaccines pSecTag/E2 and pTriExNS3 and plasmids expressing RIG-I agonist only presented both the positive and mock-vaccine groups. Our results showed that vaccines coexpressing E2t with a RIG-I agonist induced significantly higher E2 antigen specific antibody response (p<0.05). Additionally, E2t augmented the immune response to NS3 when the two vaccines were delivered in combination. Despite the lack of complete protection, on challenge day 4/5 calves vaccinated with NTC E2t(co) alone or NTC E2t(co) plus NTC NS3(co) had neutralising antibody titres exceeding 1/240 compared to 1/5 in the mock vaccine control group. Based on our results we conclude that co-expression of a RIG-I agonist with viral antigen could enhance DNA vaccine potency in cattle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2015.06.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!