Progesterone is a potential neuroprotective agent for cerebral stroke. One of the STAIR's recommendations is to test different routes of delivery of therapeutic agents. Here, we investigated the neuroprotective efficacy of intranasal delivery of progesterone in oleogel. Male mice were subjected to transient middle cerebral occlusion (MCAO) for 1 h. Mice received intranasal or intraperitoneal administrations of progesterone (8 mg/kg) at 1, 6, and 24 h post-MCAO. Plasma and brain levels of steroids were measured by gas chromatography-mass spectrometry 2 and 24 h after the last administration of progesterone. Behavioral and histopathological analyzes were performed at 48 h post-MCAO. For blood-brain barrier (BBB) permeability analysis, mice received one intranasal administration of progesterone or placebo at reperfusion and Evans Blue and sodium fluorescein extravasations were assessed at 4 h post-MCAO. Two hours after its nasal administration, progesterone reached elevated levels in brain and plasma and was bioconverted to its 5α-reduced metabolites and to 20α-dihydroprogesterone. However, brain levels of progesterone and its metabolites were about half those measured after intraperitoneal injections, whereas levels of 11-deoxycorticosterone and corticosterone were 5-times lower. In contrast, after 24 h, higher levels of progesterone were measured in brain and plasma after intranasal than after intraperitoneal delivery. Intranasal progesterone decreased the mortality rate, improved motor functions, reduced infarct, attenuated neuronal loss, and decreased the early BBB disruption. This study demonstrates a good bioavailability, a prolonged absorption and a good neuroprotective efficacy of intranasal delivery of progesterone, thus potentially offering an efficient, safe, non-stressful and very easy mode of administration in stroke patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2015.06.002 | DOI Listing |
Vaccines (Basel)
December 2024
Research Institute for Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan.
The research conducted in this preclinical study assesses QazCovid-live, a live attenuated COVID-19 vaccine created in Kazakhstan, by conducting preclinical evaluations of safety, immunogenicity, and allergenicity in various animal models, including mice, rats, hamsters, and guinea pigs. The vaccine, developed by attenuating SARS-CoV-2 via numerous Vero cell passages, had no significant adverse effects in acute and subacute toxicity assessments, even at elevated dosages. Allergenicity testing indicated the absence of both immediate and delayed hypersensitivity reactions.
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha P.O. Box 2713, Qatar.
Ketamine HCl, an FDA-approved therapeutic, is administered through various routes, including intranasal delivery. Administering an adequate therapeutic dose of intranasal ketamine HCl is challenging due to the limited volume that can be delivered intranasally given the current commercially available concentrations. This study investigates solubilizing strategies to enhance the aqueous solubility of ketamine HCl for intranasal administration.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
Designing and standardizing drug formulations are crucial for ensuring the safety and efficacy of medications. Nanomedicine utilizes nano drug delivery systems and advanced nanodevices to address numerous critical medical challenges. Currently, oral and intranasal aerosol drug delivery (OIADD) is the primary method for treating respiratory diseases worldwide.
View Article and Find Full Text PDFInt J Pharm
January 2025
College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA. Electronic address:
Intranasal drug administration offers a promising strategy for delivering combination antiretroviral therapy (cART) directly to the central nervous system to treat NeuroAIDS, leveraging the nose-to-brain route to bypass the blood-brain barrier. However, challenges such as enzymatic degradation in the nasal mucosa, low permeability, and mucociliary clearance within the nasal cavity must first be addressed to make this route feasible. To overcome these barriers, this study developed solid lipid nanoparticles (SLNs) with varying PEGylation levels (0 %, 5 %, 10 %, and 15 % w/w of PEGylated lipid), co-encapsulated with Elvitegravir (EVG) and Atazanavir (ATZ) as an integrase and protease inhibitor, respectively.
View Article and Find Full Text PDFVet Anaesth Analg
January 2025
Department of Surgery, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
Objective: To compare the sedative and physiological effects of intranasal (IN) and intramuscular (IM) delivery of detomidine in calves.
Study Design: Prospective, randomized experimental study.
Animals: A total of 20 healthy calves, aged 15.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!