Genome-wide expression analyses of the stationary phase model of ageing in yeast.

Mech Ageing Dev

Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden. Electronic address:

Published: July 2015

Ageing processes involved in replicative lifespan (RLS) and chronological lifespan (CLS) have been found to be conserved among many organisms, including in unicellular Eukarya such as yeast Saccharomyces cerevisiae. Here we performed an integrated approach of genome wide expression profiles of yeast at different time points, during growth and starvation. The aim of the study was to identify transcriptional changes in those conditions by using several different computational analyses in order to propose transcription factors, biological networks and metabolic pathways that seem to be relevant during the process of chronological ageing in yeast. Specifically, we performed differential gene expression analysis, gene-set enrichment analysis and network-based analysis, and we identified pathways affected in the stationary phase and specific transcription factors driving transcriptional adaptations. The results indicate signal propagation from G protein-coupled receptors through signaling pathway components and other stress and nutrient-induced transcription factors resulting in adaptation of yeast cells to the lack of nutrients by activating metabolism associated with aerobic metabolism of carbon sources such as ethanol, glycerol and fatty acids. In addition, we found STE12, XBP1 and TOS8 as highly connected nodes in the subnetworks of ageing yeast.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mad.2015.05.008DOI Listing

Publication Analysis

Top Keywords

ageing yeast
12
transcription factors
12
stationary phase
8
yeast
6
genome-wide expression
4
expression analyses
4
analyses stationary
4
phase model
4
ageing
4
model ageing
4

Similar Publications

Inhibition of hydrogen peroxide-induced senescence markers by yeast-derived vacuoles in human lung fibroblasts.

Biochim Biophys Acta Mol Cell Res

January 2025

Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu, Jeonju, Jeonbuk 54896, South Korea. Electronic address:

Senescence significantly contributes to aging in various tissues, influenced by factors such as lysosomal alkalinization, which disrupts autophagic flux and accumulates toxic substances. This disruption leads to oxidative stress, increased lysosomal permeability, cellular senescence, and apoptosis. Similar to mammalian lysosomes, S.

View Article and Find Full Text PDF

Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements.

View Article and Find Full Text PDF

Telomere shortening ultimately causes replicative senescence. However, identifying the mechanisms driving replicative senescence in cell populations is challenging due to the heterogeneity of telomere lengths and the asynchrony of senescence onset. Here, we present a mathematical model of telomere shortening and replicative senescence in Saccharomyces cerevisiae which is quantitatively calibrated and validated using data of telomerase-deficient single cells.

View Article and Find Full Text PDF

Mitochondria derive the majority of their lipids from other organelles through contact sites. These lipids, primarily phosphoglycerolipids, are the main components of mitochondrial membranes. In the cell, neutral lipids like triacylglycerides (TAGs) are stored in lipid droplets, playing an important role in maintaining cellular health.

View Article and Find Full Text PDF

Glucosinolates (GSLs) are nitrogen/sulfur-containing glycosides widely present in the order of Brassicales, particularly in the Brassicaceae family. Camelina ( (L.) Crantz) is an oilseed plant belonging to this family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!