The groundwater pollutant arsenic can cause various cardiovascular disorders. Angiotensin II, a potent vasoconstrictor, plays an important role in vascular dysfunction by promoting changes in endothelial function, vascular reactivity, tissue remodeling and oxidative stress. We investigated whether modulation of angiotensin II signaling and redox homeostasis could be a mechanism contributing to arsenic-induced vascular disorder. Rats were exposed to arsenic at 25, 50 and 100ppm of sodium arsenite through drinking water consecutively for 90 days. Blood pressure was recorded weekly. On the 91st day, the rats were sacrificed for blood collection and isolation of thoracic aorta. Angiotensin converting enzyme and angiotensin II levels were assessed in plasma. Aortic reactivity to angiotensin II was assessed in organ-bath system. Western blot of AT1 receptors and G protein (Gαq/11), ELISA of signal transducers of MAP kinase pathway and reactive oxygen species (ROS) generation were assessed in aorta. Arsenic caused concentration-dependent increase in systolic, diastolic and mean arterial blood pressure from the 10th, 8th and 7th week onwards, respectively. Arsenic caused concentration-dependent enhancement of the angiotensin II-induced aortic contractile response. Arsenic also caused concentration-dependent increase in the plasma levels of angiotensin II and angiotensin converting enzyme and the expression of aortic AT1 receptor and Gαq/11 proteins. Arsenic increased aortic protein kinase C activity and the concentrations of protein tyrosine kinase, extracellular signal-regulated kinase-1/2 and vascular endothelial growth factor. Further, arsenic increased aortic mRNA expression of Nox2, Nox4 and p22phox, NADPH oxidase activity and ROS generation. The results suggest that arsenic-mediated enhancement of angiotensin II signaling could be an important mechanism in the arsenic-induced vascular disorder, where ROS could augment the angiotensin II signaling through activation of MAP kinase pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2015.06.014DOI Listing

Publication Analysis

Top Keywords

angiotensin signaling
16
arsenic caused
12
caused concentration-dependent
12
angiotensin
11
arsenic
8
arsenic-induced vascular
8
vascular disorder
8
blood pressure
8
angiotensin converting
8
converting enzyme
8

Similar Publications

Reduced ATR Signaling Contributes to Endothelial Dysfunction After Preeclampsia.

Hypertension

December 2024

Department of Health and Human Physiology, The University of Iowa, Carver College of Medicine, Iowa City, IA. (K.S.S., A.E.S.).

Background: Women who had preeclampsia (a history of preeclampsia) have a >4-fold risk of developing cardiovascular disease compared with women who had an uncomplicated pregnancy (history of healthy pregnancy). Despite the remission of clinical symptoms after pregnancy, vascular endothelial dysfunction persists postpartum, mediated in part by exaggerated Ang II (angiotensin II)-mediated constriction. However, the role of vasodilatory ATRs (Ang II type 2 receptors) in this dysfunction is unknown.

View Article and Find Full Text PDF

Objective: Systemic sclerosis (SSc) is a rare but severe autoimmune disease characterized by immune dysregulation, fibrosis, and vasculopathy. While previous studies have highlighted the presence of functional autoantibodies targeting the angiotensin II type 1 receptor (ATR) and endothelin-1 type A receptor (ETR), leading to autoantibody-mediated receptor stimulation and subsequent activation of endothelial cells (ECs), a comprehensive understanding of the direct interaction between these autoantibodies and their receptors is currently lacking. Moreover, existing data confirming the presence of these autoantibodies in SSc often rely on similar methodologies and assays.

View Article and Find Full Text PDF

Functional anti-inflammatory mesoporous silica nanoplatform for Synergistic and Targeted abdominal aortic aneurysm treatment.

J Colloid Interface Sci

December 2024

Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China. Electronic address:

Abdominal aortic aneurysm (AAA) is a chronic inflammation-driven disease characterized by aortic wall destruction and expansion, leading to high morbidity and mortality. However, previous drug treatments for its common risk factors have not achieved favorable results, and the early prevention and treatment is still the main clinical dilemma. Anti-inflammation therapy is a promising therapeutical method targeting its pathogenesis mechanism, but it has not been explored in depth.

View Article and Find Full Text PDF

Background And Objectives: Maternal western-style diets that are high in glucose and fat have well-known cardiovascular effects on offspring, yet the combined influence of such diets during pregnancy is relatively less comprehended. This study investigates the impact of maternal high glucose and fat diet (HGF) on vascular constriction in offspring and the underlying mechanisms.

Methods And Results: Pregnant Sprague-Dawley rats were provided with either HGF or control diets.

View Article and Find Full Text PDF

Biased signaling in GPCRs: Structural insights and implications for drug development.

Pharmacol Ther

December 2024

Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States. Electronic address:

G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans, playing a crucial role in regulating diverse cellular processes and serving as primary drug targets. Traditional drug design has primarily focused on ligands that uniformly activate or inhibit GPCRs. However, the concept of biased agonism-where ligands selectively stabilize distinct receptor conformations, leading to unique signaling outcomes-has introduced a paradigm shift in therapeutic development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!