Modeling the neurodynamic organizations and interactions of teams.

Soc Neurosci

b The Learning Chameleon, Inc ., Los Angeles , CA , USA.

Published: December 2016

Across-brain neurodynamic organizations arise when teams perform coordinated tasks. We describe a symbolic electroencephalographic (EEG) approach that identifies when team neurodynamic organizations occur and demonstrate its utility with scientific problem solving and submarine navigation tasks. Each second, neurodynamic symbols (NS) were created showing the 1-40 Hz EEG power spectral densities for each team member. These data streams contained a performance history of the team's across-brain neurodynamic organizations. The degree of neurodynamic organization was calculated each second from a moving window average of the Shannon entropy over the task. Decreased NS entropy (i.e., greater neurodynamic organization) was prominent in the ~16 Hz EEG bins during problem solving, while during submarine navigation, the maximum NS entropy decreases were ~10 Hz and were associated with establishing the ship's location. Decreased NS entropy also occurred in the 20-40 Hz bins of both teams and was associated with uncertainty or stress. The highest mutual information levels, calculated from the EEG values of team dyads, were associated with decreased NS entropy, suggesting a link between these two measures. These studies show entropy and mutual information mapping of symbolic EEG data streams from teams can be useful for identifying organized across-brain team activation patterns.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17470919.2015.1056883DOI Listing

Publication Analysis

Top Keywords

neurodynamic organizations
16
decreased entropy
12
across-brain neurodynamic
8
problem solving
8
solving submarine
8
submarine navigation
8
data streams
8
neurodynamic organization
8
neurodynamic
6
entropy
6

Similar Publications

Neurodynamic observations indicate that the cerebral cortex evolved by self-organizing into functional networks, These networks, or distributed clusters of regions, display various degrees of attention maps based on input. Traditionally, the study of network self-organization relies predominantly on static data, overlooking temporal information in dynamic neuromorphic data. This paper proposes Temporal Self-Organizing (TSO) method for neuromorphic data processing using a spiking neural network.

View Article and Find Full Text PDF

In this paper, a recurrent neural network is proposed for distributed nonconvex optimization subject to globally coupled (in)equality constraints and local bound constraints. Two distributed optimization models, including a resource allocation problem and a consensus-constrained optimization problem, are established, where the objective functions are not necessarily convex, or the constraints do not guarantee a convex feasible set. To handle the nonconvexity, an augmented Lagrangian function is designed, based on which a recurrent neural network is developed for solving the optimization models in a distributed manner, and the convergence to a local optimal solution is proven.

View Article and Find Full Text PDF

Introduction:  Yoga practices emphasize spinal energy's role in physical, mental, and spiritual well-being, suggesting specific techniques that can enhance energy flow along the spine. Modern research aims to validate these claims and understand the mechanisms behind these effects, potentially integrating them into contemporary healthcare models. This study explores the relationship between yoga breathing techniques, spinal energy dynamics, and health based on yoga philosophy and bioenergetics.

View Article and Find Full Text PDF

Active Neurodynamic Technique at Home in Patients with Knee Osteoarthritis: An Open Single Arm Clinical Trial.

Medicina (Kaunas)

November 2024

Departamento de Fisioterapia, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain.

Article Synopsis
  • This study aimed to evaluate the impact of a home-based neurodynamic technique focused on femoral nerve mobilization for individuals with KO over a 6-8 week period.
  • Results showed significant and lasting improvements in pain levels, functionality, and overall quality of life metrics for participants, indicating that this at-home program can effectively benefit those suffering from KO.
View Article and Find Full Text PDF

Accentuation has been proposed as a general principle of perceptual organization. Here, we have developed a neurodynamic architecture to explain how accentuation affects boundary segmentation and shape perception. The model consists of bottom-up and top-down pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!