Keap1-Nrf2 Interaction Suppresses Cell Motility in Lung Adenocarcinomas by Targeting the S100P Protein.

Clin Cancer Res

Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan. Graduate Institute of Biomedical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan.

Published: October 2015

Purpose: Kelch-like ECH-associated protein 1 (Keap1) is an E3 ligase participated in the cellular defense response against oxidative stress through nuclear factor erythroid-2-related factor 2 (Nrf2). However, the role of Keap1 in regulating cancer motility is still controversial. We investigated the contribution of the Keap1-Nrf2 axis in the progression of non-small cell lung cancer (NSCLC).

Experimental Design: The expression of Keap1 and Nrf2 was examined via immunohistochemistry, real-time PCR, and Western blot analysis in a cohort of NSCLC tissues and cells. A series of in vivo and in vitro assays was performed to elucidate the contribution of the Keap1-Nrf2 axis in lung cancer mobility and progression.

Results: Keap1 expression was decreased in specimens from NSCLC patients with lymph node metastasis compared with patients without metastasis. Higher Keap1 expression levels were correlated with the survival of NSCLC patients. Moreover, manipulation of Keap1 expression affected cell migration/invasion abilities. Depletion of Nrf2 relieved the migration promotion imposed by Keap1 suppression. Mechanistic investigations found that S100P was downregulated in both Keap1-overexpressing and Nrf2-knockdown NSCLC cells. Overexpression of Keap1 and knockdown of Nrf2 both suppressed S100P expression in NSCLC cells. Knockdown of S100P inhibited cell migration in highly invasive NSCLC cells and also relieved the migration promotion imposed by Keap1 suppression in weakly invasive NSCLC cells.

Conclusions: Our findings suggest that Keap1 functions as a suppressor of tumor metastasis by targeting the Nrf2/S100P pathway in NSCLC cells. In addition, overexpression of Keap1 may be a novel NSCLC treatment strategy and/or useful biomarker for predicting NSCLC progression.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-14-2880DOI Listing

Publication Analysis

Top Keywords

nsclc cells
16
keap1 expression
12
keap1
11
nsclc
10
contribution keap1-nrf2
8
keap1-nrf2 axis
8
lung cancer
8
nsclc patients
8
relieved migration
8
migration promotion
8

Similar Publications

Optimizing T cell inflamed signature through a combination biomarker approach for predicting immunotherapy response in NSCLC.

Sci Rep

December 2024

Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.

The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers.

View Article and Find Full Text PDF

Lung cancer ranks as the most prevalent malignant neoplasm worldwide, contributing significantly to cancer-related mortality. Stemness is a well-recognized factor underlying radiotherapy resistance, recurrence and metastasis in non-small-cell lung cancer (NSCLC) patients. Our prior investigations have established the role of IQ motif containing GTPase-activating protein 3 (IQGAP3) in mediating radiotherapy resistance in lung cancer, but its impact on lung cancer stemness remains unexplored.

View Article and Find Full Text PDF

STIL is a regulatory protein essential for centriole biogenesis, and its dysregulation has been implicated in various diseases, including malignancies. However, its role in non-small-cell lung carcinoma (NSCLC) remains unclear. In this study, we examined STIL expression and its potential association with chromosomal numerical abnormalities (CNAs) in NSCLC using The Cancer Genome Atlas (TCGA) dataset, immunohistochemical analysis, and in vitro experiments with NSCLC cell lines designed to overexpress STIL.

View Article and Find Full Text PDF

Lung cancer continues to be a major contributor to cancer-related deaths globally. Recent advances in immunotherapy have introduced promising treatments targeting T cell functionality. Central to the efficacy of these therapies is the role of T cells, which are often rendered dysfunctional due to continuous antigenic stimulation in the tumor microenvironment-a condition referred to as T cell exhaustion.

View Article and Find Full Text PDF

TLS and immune cell profiling: immunomodulatory effects of immunochemotherapy on tumor microenvironment in resectable stage III NSCLC.

Front Immunol

December 2024

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.

Background: The use of programmed death-1 (PD-1) inhibitors in the neoadjuvant setting for patients with resectable stage III NSCLC has revolutionized this field in recent years. However, there is still 40%-60% of patients do not benefit from this approach. The complex interactions between immune cell subtypes and tertiary lymphoid structures (TLSs) within the tumor microenvironment (TME) may influence prognosis and the response to immunochemotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!