Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The phytochemical resveratrol (trans-3,5,4'-trihydroxystilbene) has drawn great interest as health-promoting food ingredient and potential therapeutic agent. However, resveratrol shows vanishingly low water solubility; this limits its uptake and complicates the development of effective therapeutic forms. Glycosylation should be useful to enhance resveratrol solubility, with the caveat that unselective attachment of sugars could destroy the molecule's antioxidant activity. UGT71A15 (a uridine 5'-diphosphate α-D-glucose-dependent glucosyltransferase from apple) was used to synthesize resveratrol 3,5-β-D-diglucoside; this was about 1700-fold more water-soluble than the unglucosylated molecule (∼0.18 mM), yet retained most of the antioxidant activity. Resveratrol 3-β-D-glucoside, which is the naturally abundant form of resveratrol, was a practical substrate for perfect site-selective conversion into the target diglucoside in quantitative yield (g L concentration).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.201500284 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!