A Single Conserved Residue Mediates Binding of the Ribonucleotide Reductase Catalytic Subunit RRM1 to RRM2 and Is Essential for Mouse Development.

Mol Cell Biol

Genomic Instability Group, Spanish National Cancer Research Center, Madrid, Spain Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden

Published: September 2015

The ribonucleotide reductase (RNR) complex, composed of a catalytic subunit (RRM1) and a regulatory subunit (RRM2), is thought to be a rate-limiting enzymatic complex for the production of nucleotides. In humans, the Rrm1 gene lies at 11p15.5, a tumor suppressor region, and RRM1 expression in cancer has been shown to predict responses to chemotherapy. Nevertheless, whether RRM1 is essential in mammalian cells and what the effects of its haploinsufficiency are remain unknown. To model RNR function in mice we used a mutation previously described in Saccharomyces cerevisiae (Rnr1-W688G) which, despite being viable, leads to increased interaction of the RNR complex with its allosteric inhibitor Sml1. In contrast to yeast, homozygous mutant mice carrying the Rrm1 mutation (Rrm1(WG/WG)) are not viable, even at the earliest embryonic stages. Proteomic analyses failed to identify proteins that specifically bind to the mutant RRM1 but revealed that, in mammals, the mutation prevents RRM1 binding to RRM2. Despite the impact of the mutation, Rrm1(WG/+) mice and cells presented no obvious phenotype, suggesting that the RRM1 protein exists in excess. Our work reveals that binding of RRM1 to RRM2 is essential for mammalian cells and provides the first loss-of-function model of the RNR complex for genetic studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525308PMC
http://dx.doi.org/10.1128/MCB.00475-15DOI Listing

Publication Analysis

Top Keywords

rnr complex
12
rrm1
10
ribonucleotide reductase
8
catalytic subunit
8
subunit rrm1
8
rrm1 rrm2
8
rrm2 essential
8
essential mammalian
8
mammalian cells
8
model rnr
8

Similar Publications

Targeting iron metabolism has emerged as a novel therapeutic strategy for the treatment of cancer. As such, iron chelator drugs are repurposed or specifically designed as anticancer agents. Two important chelators, deferasirox (Def) and triapine (Trp), attack the intracellular supply of iron (Fe) and inhibit Fe-dependent pathways responsible for cellular proliferation and metastasis.

View Article and Find Full Text PDF

R-loop formation contributes to mTORC1 activation-dependent DNA replication stress induced by p53 deficiency.

Acta Biochim Biophys Sin (Shanghai)

November 2024

Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Disease, Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.

DNA replication stress is a significant contributor to spontaneous DNA damage and genome instability. While the impact of p53 deficiency on increasing DNA replication stress is known, the specific molecular mechanism underlying this phenomenon remains poorly understood. This study explores how p53 deficiency induces DNA replication stress by activating mTORC1 through R-loop formation, which is facilitated by the upregulation of RNR.

View Article and Find Full Text PDF

The reactivity of the V[triple bond, length as m-dash]C Bu multiple bonds in the complex (dBDI)V[triple bond, length as m-dash]C Bu(OEt) (C) (dBDI = ArNC(CH)CHC(CH)NAr, Ar = 2,6- PrCH) with unsaturated substrates such as N[triple bond, length as m-dash]CR (R = Ad or Ph) and P[triple bond, length as m-dash]CAd leads to the formation of rare 3d transition metal compounds featuring α-aza-vanadacyclobutadiene, (dBDI)V(κ- , - BuC(R)N) (R = Ad, 1; R = Ph, 2) and β-phospha-vanadacyclobutadiene moieties, (dBDI)V(κ- , - BuPAd) (3). Complexes 1-3 are characterized using multinuclear and multidimensional NMR spectroscopy, including the preparation of the 50% N-enriched isotopologue (dBDI)V(κ- , - BuCC(Ad)N) (1-N). Solid-state structural analysis is used to determine the dominant resonance structures of these unique pnictogen-based vanadacyclobutadienes.

View Article and Find Full Text PDF

Recent Insights into the Reaction Mechanisms of Non-Heme Diiron Enzymes Containing Oxoiron(IV) Complexes.

Chembiochem

November 2024

Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.

Article Synopsis
  • Oxoiron(IV) complexes play a vital role in the catalytic processes of non-heme diiron enzymes, which activate dioxygen to produce reactive diiron-oxo species.
  • The review outlines the structures, formation processes, and functions of these high-valent intermediates across eight different diiron enzymes, including sMMO and RNR, representing various enzyme subfamilies.
  • A systematic analysis of the structural and mechanistic differences among these enzymes is also provided, highlighting their diverse roles in facilitating complex oxidative reactions.
View Article and Find Full Text PDF

Ribonucleotide reductases (RNRs) reduce ribonucleotides to deoxyribonucleotides using radical-based chemistry. For class Ia RNRs, the radical species is stored in a separate subunit (β2) from the subunit housing the active site (α2), requiring the formation of a short-lived α2β2 complex and long-range radical transfer (RT). RT occurs via proton-coupled electron transfer (PCET) over a long distance (~32-Å) and involves the formation and decay of multiple amino acid radical species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!