Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nrneph.2015.97 | DOI Listing |
Int J Mol Sci
January 2025
Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
Several microRNAs (miRNAs) emerged as powerful regulators of fibrotic processes, "fibromiRs", and can also influence the expression of genes responsible for the generation of reactive oxygen species, "redoximiRs". We aimed to investigate whether plasma exosomes from hypertensive and diabetes patients are enriched in fibromiRs and redoximiRs using deep sequencing technology and their association with relevant signalling pathways implicated in oxidative stress and fibrogenesis by GO terms and KEGG pathways. RNA-Seq analysis from P-EXO identified 31 differentially expressed (DE) miRNAs in patients compared to controls, of which 77% are biofluid specific.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
Chronic kidney disease (CKD) is prevalent among older cats. The transforming growth factor beta 1 (TGF-β1) pathway is associated with renal fibrosis. TGF-β1 signaling through the non-canonical/smad-independent pathway activates mitogen-activated protein kinase (MAPK) signaling, which is linked to fibrosis and apoptosis.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
Chronic kidney disease (CKD) is a major public health concern around the world. It is a significant risk factor for cardiovascular disease (CVD), and, as it progresses, the risk of cardiovascular events increases. Furthermore, end-stage kidney disease severely affects life expectancy and quality of life.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea.
Chronic kidney disease (CKD) progresses through mechanisms involving inflammation, fibrosis, and oxidative stress, leading to the gradual structural and functional deterioration of the kidneys. Tormentic acid (TA), a triterpenoid compound with known anti-inflammatory and antioxidant properties, shows significant potential in counteracting these pathological processes. This study explored the protective role of TA in a unilateral ureteral obstruction (UUO)-induced CKD model.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Chronic kidney disease (CKD) is a global health concern caused by conditions such as hypertension, diabetes, hyperlipidemia, and chronic nephritis, leading to structural and functional kidney injury. Kidney fibrosis is a common outcome of CKD progression, with abnormal fatty acid oxidation (FAO) disrupting renal energy homeostasis and leading to functional impairments. This results in maladaptive repair mechanisms and the secretion of profibrotic factors, and exacerbates renal fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!