Inhibition of glycogen synthase kinase-3β enhances cognitive recovery after stroke: the role of TAK1.

Learn Mem

Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA MC-1840, Department of Neurology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA The Stroke Center at Hartford Hospital, Hartford, Connecticut 06102, USA

Published: July 2015

Memory deficits are common among stroke survivors. Identifying neuroprotective agents that can prevent memory impairment or improve memory recovery is a vital area of research. Glycogen synthase kinase-3β (GSK-3β) is involved in several essential intracellular signaling pathways. Unlike many other kinases, GSK-3β is active only when dephosphorylated and activation promotes inflammation and apoptosis. In contrast, increased phosphorylation leads to reduced GSK-3β (pGSK-3β) activity. GSK-3β inhibition has beneficial effects on memory in other disease models. GSK-3β regulates both the 5'AMP-activated kinase (AMPK) and transforming growth factor-β-activated kinase (TAK1) pathways. In this work, we examined the effect of GSK-3β inhibition, both independently, in conjunction with a TAK inhibitor, and in AMPK-α2 deficient mice, after stroke to investigate mechanistic interactions between these pathways. GSK-3β inhibition was neuroprotective and ameliorated stroke-induced cognitive impairments. This was independent of AMPK signaling as the protective effects of GSK-3β inhibition were seen in AMPK deficient mice. However, GSK-3β inhibition provided no additive protection in mice treated with a TAK inhibitor suggesting that TAK1 is an upstream regulator of GSK-3β. Targeting GSK-3β could be a novel therapeutic strategy for post-stroke cognitive deficits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4478333PMC
http://dx.doi.org/10.1101/lm.038083.115DOI Listing

Publication Analysis

Top Keywords

gsk-3β inhibition
20
gsk-3β
11
glycogen synthase
8
synthase kinase-3β
8
tak inhibitor
8
deficient mice
8
inhibition
6
inhibition glycogen
4
kinase-3β enhances
4
enhances cognitive
4

Similar Publications

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.

View Article and Find Full Text PDF

Background: Dysfunction in podocyte mitophagy has been identified as a contributing factor to the onset and progression of diabetic nephropathy (DN), and BMAL1 plays an important role in the regulation of mitophagy. Thus, this study intended to examine the impact of BMAL1 on podocyte mitophagy in DN and elucidate its underlying mechanisms.

Materials And Methods: High D-glucose (HG)-treated MPC5 cells was used as a podocyte injury model for investigating the potential roles of BMAL1 in DN.

View Article and Find Full Text PDF

High interstitial fluid pressure enhances USP1-dependent KIF11 protein stability to promote hepatocellular carcinoma progression.

J Transl Med

January 2025

Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Nanchang, 330006, Jiangxi, China.

Background: HCC is characterized by a high interstitial fluid pressure (HIFP) environment, which appears to support cancer cell survival. However, the mechanisms behind this phenomenon are not fully understood.

Methods: This study investigates the role of kinesin family member 11 (KIF11) in HCC under HIFP conditions, using both in vivo and in vitro models.

View Article and Find Full Text PDF

Regulatory role of lnc-MAP3K13-3:1 on miR-6894-3p and SHROOM2 in modulating cellular dynamics in hepatocellular carcinoma.

BMC Cancer

January 2025

Jiangxi Provincial Key Laboratory of Child Development and Genetics, Jiangxi Provincial Children's Hospital, No. 122 of YangMing Road, DongHu District, NanChang, 330006, China.

Background: Hepatocellular carcinoma (HCC) is a prevalent primary liver malignancy and a leading cause of cancer-related mortality worldwide. Despite advancements in therapeutic strategies, the 5-year survival rate for individuals undergoing curative resection remains between 10% and 15%. Consequently, identifying molecular targets that specifically inhibit the proliferation and metastasis of HCC cells is critical for improving treatment outcomes.

View Article and Find Full Text PDF

The emergence and prevalence of hypervirulent Klebsiella pneumoniae (hvKP) have proposed a great challenge to control this infection. Therefore, exploring some new drugs or strategies for treating hvKP infection is an urgent issue for scientific researchers. In the present study, the clpV gene deletion strain of hvKP (ΔclpV-hvKP) was constructed using CRISPR-Cas9 technology, and the biological characteristics of ΔclpV-hvKP were investigated to explore the new targets for controlling this pathogen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!