C α-formylglycine (FGly) is the catalytic residue of sulfatases in eukaryotes. It is generated by a unique post-translational modification catalysed by the FGly-generating enzyme (FGE) in the endoplasmic reticulum. FGE oxidizes a cysteine residue within the conserved CxPxR sequence motif of nascent sulfatase polypeptides to FGly. Here we show that this oxidation is strictly dependent on molecular oxygen (O2) and consumes 1 mol O2 per mol FGly formed. For maximal activity FGE requires an O2 concentration of 9% (105 μM). Sustained FGE activity further requires the presence of a thiol-based reductant such as DTT. FGly is also formed in the absence of DTT, but its formation ceases rapidly. Thus inactivated FGE accumulates in which the cysteine pair Cys336/Cys341 in the catalytic site is oxidized to form disulfide bridges between either Cys336 and Cys341 or Cys341 and the CxPxR cysteine of the sulfatase. These results strongly suggest that the Cys336/Cys341 pair is directly involved in the O2 -dependent conversion of the CxPxR cysteine to FGly. The available data characterize eukaryotic FGE as a monooxygenase, in which Cys336/Cys341 disulfide bridge formation donates the electrons required to reduce one oxygen atom of O2 to water while the other oxygen atom oxidizes the CxPxR cysteine to FGly. Regeneration of a reduced Cys336/Cys341 pair is accomplished in vivo by a yet unknown reductant of the endoplasmic reticulum or in vitro by DTT. Remarkably, this monooxygenase reaction utilizes O2 without involvement of any activating cofactor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.13347 | DOI Listing |
Chembiochem
December 2020
Faculty of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.
Formylglycine-generating enzymes specifically oxidize cysteine within the consensus sequence CxPxR to C -formylglycine (FGly). This noncanonical electrophilic amino acid can subsequently be addressed selectively by bioorthogonal hydrazino-iso-Pictet-Spengler (HIPS) or Knoevenagel ligation to attach payloads like fluorophores or drugs to proteins to obtain a defined payload-to-protein ratio. However, the disadvantages of these conjugation techniques include the need for a large excess of conjugation building block, comparably low reaction rates and limited stability of FGly-containing proteins.
View Article and Find Full Text PDFMethods Mol Biol
April 2020
Catalent Pharma Solutions, Richmond, CA, USA.
As a critical feature of the next generation of antibody-drug conjugates (ADCs), site-specific bioconjugation approaches can help to optimize stability, pharmacokinetics, efficacy, and safety as well as improve manufacturing consistency. The SMARTag technology platform offers a practical and efficient chemoenzymatic solution for site-specific protein modifications. A bioorthogonal aldehyde handle is introduced through the oxidation of a cysteine residue, embedded in a specific peptide sequence (CxPxR), to the aldehyde-bearing formylglycine (fGly).
View Article and Find Full Text PDFMethods Mol Biol
December 2018
Catalent Pharma Solutions, Emeryville, CA, USA.
Enzymatic modification of proteins can generate uniquely reactive chemical functionality, enabling site-specific reactions on the protein surface. Formylglycine-generating enzyme (FGE) is one enzyme that can be exploited in this fashion. FGE binds its consensus sequence (CXPXR, known as the "aldehyde-tag") and converts the cysteine to a formylglycine (fGly).
View Article and Find Full Text PDFFEBS J
September 2015
Department of Cellular Biochemistry, University of Göttingen, Germany.
C α-formylglycine (FGly) is the catalytic residue of sulfatases in eukaryotes. It is generated by a unique post-translational modification catalysed by the FGly-generating enzyme (FGE) in the endoplasmic reticulum. FGE oxidizes a cysteine residue within the conserved CxPxR sequence motif of nascent sulfatase polypeptides to FGly.
View Article and Find Full Text PDFNat Protoc
May 2012
Redwood Bioscience Inc., Emeryville, California, USA.
We describe a method for modifying proteins site-specifically using a chemoenzymatic bioconjugation approach. Formylglycine generating enzyme (FGE) recognizes a pentapeptide consensus sequence, CxPxR, and it specifically oxidizes the cysteine in this sequence to an unusual aldehyde-bearing formylglyine. The FGE recognition sequence, or aldehyde tag, can be inserted into heterologous recombinant proteins produced in either prokaryotic or eukaryotic expression systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!