Whole heart decellularization combined with patient-specific cells may prove to be an extremely valuable approach to engineer new hearts. Mild detergents are commonly used in the decellularization process, but are known to denature and solubilize key proteins and growth factors and can therefore be destructive to the extracellular matrix (ECM) during the decellularization process. In this study, the decellularization of porcine hearts was accomplished in 24 h with only 6 h of sodium dodecyl sulfate exposure and 98% DNA removal. Automatically controlling the pressure during decellularization reduced the detergent exposure time while still completely removing immunogenic cell debris. Stimulation of macrophages was greatly reduced when comparing native tissue samples to the processed ECM. Complete cell removal was confirmed by analysis of DNA content. General collagen and elastin preservation was demonstrated. Glycosaminoglycans and collagen quantification both showed no significant differences in content after decellularization. The compression elastic modulus of the ECM after decellularization was lower than native at low strains, but there was no significant difference at high strains. Polyurethane casts of the vasculature of native and decellularized hearts demonstrated that the microvasculature network was preserved after decellularization. A static blood thrombosis assay using bovine blood was also developed. Finally, the recellularization potential of the ECM samples was demonstrated by reseeding cardiac fibroblasts and endothelial cells on the myocardium and endocardium samples.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEC.2014.0709DOI Listing

Publication Analysis

Top Keywords

decellularization
9
heart decellularization
8
decellularization process
8
ecm decellularization
8
automation pressure
4
pressure control
4
control improves
4
improves porcine
4
porcine heart
4
decellularization heart
4

Similar Publications

Injectable DAT-ALG Hydrogel Mitigates Senescence of Loaded DPMSCs and Boosts Healing of Perianal Fistulas in Crohn's Disease.

ACS Biomater Sci Eng

January 2025

Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.

Perianal fistulas (PAFs) are a severe complication of Crohn's disease that significantly impact patient prognosis and quality of life. While stem-cell-based strategies have been widely applied for PAF treatment, their efficacy remains limited. Our study introduces an injectable, temperature-controlled decellularized adipose tissue-alginate hydrogel loaded with dental pulp mesenchymal stem cells (DPMSCs) for in vivo fistula treatment.

View Article and Find Full Text PDF

Recent interest has been focused on extracellular matrix (ECM)-based scaffolds totreat critical-sized bone injuries. In this study, urea was used to decellularize and solubilize human placenta tissue. Then, different concentrations of ECM were composited with 8% alginate (Alg) and 12% silk fibroin (SF) for printing in order to produce a natural 3D construct that resembled bone tissue.

View Article and Find Full Text PDF

Multiscale Mechanical Study of Proanthocyanidins for Recovering Residual Stress in Decellularized Blood Vessels.

Adv Healthc Mater

January 2025

Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, 400044, P. R. China.

Decellularized artificial blood vessels prepared using physical and chemical methods often exhibit limitations, including poor mechanical performance, susceptibility to inflammation and calcification, and reduced patency. Cross-linking techniques can enhance the stiffness, as well as anti-inflammatory and anti-calcification properties of decellularized vessels. However, conventional cross-linking methods fail to effectively alleviate residual stress post-decellularization, which significantly impacts the patency and vascular remodeling following the implantation of artificial vessels.

View Article and Find Full Text PDF

Cartilage repair remains a formidable challenge because of its limited regenerative capacity. Construction of a biomimetic hydrogel matrix that can induce cell aggregation is a promising therapeutic option. Cell aggregates are more beneficial than dissociated cells for improving survival and chondrogenic differentiation, thereby facilitating cartilage repair.

View Article and Find Full Text PDF

Decellularized tissue-engineered vascular grafts (dTEVGs) exhibit superior biocompatibility, anti-infection properties and repair potential, contributing to better patency and making them a more ideal choice for arteriovenous grafts (AVGs) in hemodialysis compared to chemically synthesized grafts. However, the unsatisfactory reendothelialization and smooth muscle remodeling of current dTEVGs limit their advantages. In this study, we investigated the use of elastase to improve the porosity of elastic fiber layers in dTEVGs, aiming to promote cell infiltration and achieve superior reendothelialization and smooth muscle remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!