Current HIV-1 gene therapy approaches aim at stopping the viral life cycle at its earliest steps, such as entry or immediate postentry events. Among the most widely adopted strategies are CCR5 downregulation/knockout and the use of broadly neutralizing antibodies. However, the long-term efficacy and side effects are still unclear. TRIM5α is an interferon-stimulated restriction factor that can intercept incoming retroviruses within one hour of cytosolic entry and potently inhibit the infectivity of restriction-sensitive viruses. The human TRIM5α (TRIM5αhu) generally does not efficiently target HIV-1, but point mutations in its capsid-binding domain can confer anti-HIV-1 activity. Although the mechanisms by which TRIM5αhu mutants inhibit HIV-1 are relatively well understood, their characterization as potential transgenes for gene therapy is lacking. Additionally, previous reports of general immune activation by overexpression of TRIM5α have hindered its broad adoption as a potential transgene. Here we demonstrate the ability of the R332G-R335G TRIM5αhu mutant to efficiently restrict highly divergent HIV-1 strains, including Group O, as well as clinical isolates bearing cytotoxic T lymphocyte escape mutations. R332G-R335G TRIM5αhu efficiently protected human lymphocytes against HIV-1 infection, even when expressed at relatively low levels following lentiviral transduction. Most importantly, under these conditions Rhesus macaque TRIM5α (TRIM5αRh) and TRIM5αhu (wild-type or mutated) had no major effects on the NF-κB pathway. Transgenic TRIM5α did not modulate the kinetics of IκBα, JunB, and TNFAIP3 expression following TNF-α treatment. Finally, we show that human lymphocytes expressing R332G-R335G TRIM5αhu have clear survival advantages over unmodified parental cells in the presence of pathogenic, replication-competent HIV-1. These results support the relevance of R332G-R335G and other mutants of TRIM5αhu as candidate effectors for HIV-1 gene therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4630796 | PMC |
http://dx.doi.org/10.1089/hum.2015.059 | DOI Listing |
Zool Res
January 2025
Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China. E-mail:
Severe combined immunodeficiency disease (SCID), characterized by profound immune system dysfunction, can lead to life-threatening infections and death. Animal models play a pivotal role in elucidating biological processes and advancing therapeutic strategies. Recent advances in gene-editing technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), CRISPR/Cas9, and base editing, have significantly enhanced the generation of SCID models.
View Article and Find Full Text PDFRev Med Suisse
January 2025
Service d'oto-rhino-laryngologie et de chirurgie cervico-faciale, Centre hospitalier universitaire vaudois, 1011 Lausanne.
This article highlights recent advancements in otorhinolaryngology. It reviews innovations in managing sudden sensory-neural hearing loss through low-dose glucocorticoid treatments and explores pediatric audiology breakthroughs, particularly gene therapy for DFNB9 deafness. In speech pathology and oncology, a new minimally invasive robotic surgical approach enhances organ preservation for head and neck cancers.
View Article and Find Full Text PDFFront Immunol
January 2025
The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
Alternative splicing (AS) is a mechanism that generates translational diversity within a genome. Equally important is the dynamic adaptability of the splicing machinery, which can give preference to one isoform over others encoded by a single gene. These isoform preferences change in response to the cell's state and function.
View Article and Find Full Text PDFFront Immunol
January 2025
Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.
Background: SLE and ME/CFS both present significant fatigue and share immune dysregulation. The mechanisms underlying fatigue in these disorders remain unclear, and there are no standardized treatments. This study aims to explore shared mechanisms and predict potential therapeutic drugs for fatigue in SLE and ME/CFS.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Rheumatology & Allergology, Japanese Red Cross Medical Center, Tokyo, Japan.
Patients with A20 haploinsufficiency (HA20) presenting with central nervous system (CNS) symptoms are rare, and available reports are limited. Here, we describe a patient with HA20, previously followed up as Behçet disease, who presented with CNS symptoms in adulthood. A 38-year-old Japanese male who had been followed up for incomplete Behçet disease at another hospital since 28 years of age presented to our hospital with acute-onset diplopia and persistent hiccups that were severe enough to cause vomiting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!