Understanding and controlling the shape of thin, soft objects has been the focus of significant research efforts among physicists, biologists, and engineers in the last decade. These studies aim to utilize advanced materials in novel, adaptive ways such as fabricating smart actuators or mimicking living tissues. Here, we present the controlled growth-like morphing of 2D sheets into 3D shapes by preparing geometric composite structures that deform by residual swelling. The morphing of these geometric composites is dictated by both swelling and geometry, with diffusion controlling the swelling-induced actuation, and geometric confinement dictating the structure's deformed shape. Building on a simple mechanical analog, we present an analytical model that quantitatively describes how the Gaussian and mean curvatures of a thin disk are affected by the interplay among geometry, mechanics, and swelling. This model is in excellent agreement with our experiments and numerics. We show that the dynamics of residual swelling is dictated by a competition between two characteristic diffusive length scales governed by geometry. Our results provide the first 2D analog of Timoshenko's classical formula for the thermal bending of bimetallic beams - our generalization explains how the Gaussian curvature of a 2D geometric composite is affected by geometry and elasticity. The understanding conferred by these results suggests that the controlled shaping of geometric composites may provide a simple complement to traditional manufacturing techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5sm00863h | DOI Listing |
Langmuir
January 2025
Chemistry Department, Bilkent University, Ankara 06800, Turkey.
The specific ion effect (SIE), the control of polymer solubility in aqueous solutions by the added ions, has been a phenomenon known for more than a century. The seemingly simple nature of the ion-polymer-water interactions can lead to complex behaviors, which have also been exploited in many applications in biochemistry, electrochemistry, and energy harvesting. Here, we show an emerging diversification of actuation behaviors in "salty" hydrogel and hydrogel-paper actuators.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China. Electronic address:
Traditional tissue engineering strategies focus on geometrically static tissue scaffolds, lacking the dynamic capability found in native tissues. The emerging field of 4D bioprinting offers a promising method to address this challenge. However, the requirement for consistent exogenous supplementation of growth factors (GFs) during tissue maturation poses a significant obstacle for in vivo application of 4D bioprinted constructs.
View Article and Find Full Text PDFSci Rep
December 2024
College of Aerospace Engineering, Shenyang Aerospace University, Shenyang, 110136, China.
This paper had conducted tensile shear tests on single-lap joints (SLJs)bonded structures of carbon fiber reinforced resin matrix (CFRP) composite laminates with different overlap lengths, overlap widths, overlap model, adherend material, and adhesive layer thicknesses under two environments: room temperature dry state (RTD) and elevated temperature wet state (ETW). The failure modes were observed, and load-displacement curves were obtained. The microscopic morphology of the fracture surface was observed by scanning electron microscope (SEM).
View Article and Find Full Text PDFSci Rep
December 2024
Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China.
Exploring the components of soil organic carbon (SOC) and aggregate stability across different elevations is crucial to assessing the stability of SOC in subtropical forest ecosystems under climate change. In this study, we investigated the spatial variation of active carbon (C) compositions, aggregate distribution, and stability in Chinese fir (Cunninghamia lanceolata) plantations across an elevation gradient from 750 to 1150 m a.s.
View Article and Find Full Text PDFSci Rep
December 2024
Key Laboratory of Computing Power Network and Information Security, Shandong Computer Science Center (National Supercomputing Center in Jinan), Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, Shandong, P. R. China.
Crystal structure similarity is useful for the chemical analysis of nowadays big materials databases and data mining new materials. Here we propose to use two-dimensional Wasserstein distance (earth mover's distance) to measure the compositional similarity between different compounds, based on the periodic table representation of compositions. To demonstrate the effectiveness of our approach, 1586 Cu-S based compounds are taken from the inorganic crystal structure database (ICSD) to form a validation dataset.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!