Efavirenz (EFZ) is one of the most used drugs in the treatment of AIDS and is the first antiretroviral choice. However, since it has low solubility, it does not exhibit suitable bioavailability, which interferes with its therapeutic action and is classified as a class II drug according Biopharmaceutical Classification System (low solubility and high permeability). Among several drug delivery systems, the multicomponent systems with cyclodextrins and hydrophilic polymers are a promising alternative for increasing the aqueous solubility of the drug. The present study aimed to develop and characterize in a ternary system of EFZ, MβCD and PVP K30. The results showed that the solid ternary system provided a large increase in the dissolution rate which was greater than 80% and was characterized by DSC, TG, XRD, FT-IR and SEM. The use of the ternary system (EFZ, MβCD and PVP K30 1%) proved to be a viable, effective and safe delivery of the drug. The addition of the hydrophilic polymer appeared to be suitable for the development of a solid oral pharmaceutical product, with possible industrial scale-up and with low concentration of CDs (cyclodextrins).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2015.04.050DOI Listing

Publication Analysis

Top Keywords

ternary system
12
multicomponent systems
8
systems cyclodextrins
8
cyclodextrins hydrophilic
8
hydrophilic polymers
8
low solubility
8
system efz
8
efz mβcd
8
mβcd pvp
8
pvp k30
8

Similar Publications

Due to the escalating threat of the pathogens' capability of quick adaptation to antibiotics, finding new alternatives is crucial. Although antimicrobial peptides (AMPs) are highly potent and effective, their therapeutic use is limited' as they are prone to enzymatic degradation, are cytotoxic and have low retention. To overcome these challenges, we investigate the complexation of the cationic AMP colistin with diblock copolymers poly(ethylene oxide)--poly(methacrylic acid) (PEO--PMAA) forming colistin-complex coacervate core micelles (colistin-C3Ms).

View Article and Find Full Text PDF

Limestone mining waste and its derived CaO were checked as an adsorbents of pb, Cu, and Cd ions from water solution. The characterization of Limestone and calcined limestone was studied by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Scanning Electron Microscope (SEM), and Surface area measurements (BET). The optimum conditions of sorbent dosage, pH, initial concentration, and contact time factors were investigated for pristine limestone and calcined limestone absorbents.

View Article and Find Full Text PDF

Green chemistry focuses on reducing the environmental impacts of chemicals through sustainable practices. Traditional methods for extracting bioactive compounds from leaves, such as hydro-distillation and organic solvent extraction, have limitations, including long extraction times, high energy consumption, and potential toxic solvent residues. This study explored the use of supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), and gas-expanded liquid (GXL) processes to improve efficiency and selectivity.

View Article and Find Full Text PDF

Water electrolysis is a promising path to the industrialization development of hydrogen energy. The exploitation of high-efficiency and inexpensive catalysts become important to the mass use of water decomposition. Ni-based nanomaterials have exhibited great potential for the catalysis of water splitting, which have attracted the attention of researchers around the world.

View Article and Find Full Text PDF

The development of efficient and sustainable photocatalysts for wastewater treatment remains a critical challenge in environmental remediation. In this study, a ternary photocatalyst, Cu-CuO/g-CN, was synthesized by embedding copper-copper oxide heterostructural nanocrystals onto g-CN nanosheets via a simple deposition method. Structural and optical characterization confirmed the successful formation of the heterostructure, which combines the narrow bandgap of CuO, the high stability of g-CN, and the surface plasmon resonance (SPR) effect of Cu nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!