A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films. | LitMetric

Impurity elements used as dopants are essential to semiconductor technology for controlling the concentration of charge carriers. Their location in the semiconductor crystal is determined during the fabrication process and remains fixed. However, another possibility exists whereby the concentration of charge carriers is modified using polarization charge as a quasi-dopant, which implies the possibility to write, displace, erase and re-create channels having a metallic-type conductivity inside a wide-bandgap semiconductor matrix. Polarization-charge doping is achieved in ferroelectrics by the creation of charged domain walls. The intentional creation of stable charged domain walls has so far only been reported in BaTiO3 single crystals, with a process that involves cooling the material through its phase transition under a strong electric bias, but this is not a viable technology when real-time reconfigurability is sought in working devices. Here, we demonstrate a technique allowing the creation and nanoscale manipulation of charged domain walls and their action as a real-time doping activator in ferroelectric thin films. Stable individual and multiple conductive channels with various lengths from 3 μm to 100 nm were created, erased and recreated in another location, and their high metallic-type conductivity was verified. This takes the idea of hardware reconfigurable electronics one step forward.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nnano.2015.114DOI Listing

Publication Analysis

Top Keywords

charged domain
12
domain walls
12
polarization charge
8
ferroelectric thin
8
thin films
8
concentration charge
8
charge carriers
8
metallic-type conductivity
8
charge reconfigurable
4
reconfigurable quasi-dopant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!