Backward phase-matching for nonlinear optical generation in negative-index materials.

Nat Mater

1] School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA [2] School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

Published: August 2015

Metamaterials have enabled the realization of unconventional electromagnetic properties not found in nature, which provokes us to rethink the established rules of optics in both the linear and nonlinear regimes. One of the most intriguing phenomena in nonlinear metamaterials is 'backward phase-matching', which describes counter-propagating fundamental and harmonic waves in a negative-index medium. Predicted nearly a decade ago, this process is still awaiting a definitive experimental confirmation at optical frequencies. Here, we report optical measurements showing backward phase-matching by exploiting two distinct modes in a nonlinear plasmonic waveguide, where the real parts of the mode refractive indices are 3.4 and -3.4 for the fundamental and the harmonic waves respectively. The observed peak conversion efficiency at the excitation wavelength of ∼780 nm indicates the fulfilment of the phase-matching condition of k(2ω) = 2k(ω) and n(2ω) = -n(ω), where the coherent harmonic wave emerges along a direction opposite to that of the incoming fundamental light.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nmat4324DOI Listing

Publication Analysis

Top Keywords

backward phase-matching
8
fundamental harmonic
8
harmonic waves
8
nonlinear
4
phase-matching nonlinear
4
nonlinear optical
4
optical generation
4
generation negative-index
4
negative-index materials
4
materials metamaterials
4

Similar Publications

Integrated Backward Second-Harmonic Generation through Optically Induced Quasi-Phase-Matching.

Phys Rev Lett

October 2023

École Polytechnique Fédérale de Lausanne (EPFL), Photonic Systems Laboratory (PHOSL), Lausanne CH-1015, Switzerland.

Quasi-phase-matching for efficient backward second-harmonic generation requires sub-μm poling periods, a nontrivial fabrication feat. For the first time, we report integrated first-order quasiphase-matched backward second-harmonic generation enabled by seeded all-optical poling. The self-organized grating inscription circumvents all fabrication challenges.

View Article and Find Full Text PDF

The topology of exceptional points (EPs) has been revealed by taking stationary or dynamical encircling around them, which induces eigenstate exchange or chiral mode conversion. However, the conversions are usually reciprocal obeying restricted transmittances. Here we propose the concept of nonreciprocal encircling of EPs in a dynamic waveguide under complex modulation.

View Article and Find Full Text PDF

A nonlinear process based on backward quasi-phase matching (BQPM) can be used to realize mirrorless optical parametric oscillation, the generation of paired photons with a separable joint spectral amplitude and narrow wavelength bandwidth, and the preparation of counterpropagating polarization-entangled photons, which shows distinct advantages over some applications based on forward quasi-phase matching. In this work, three types of BQPM in a bulk periodically poled potassium titanyl phosphate crystal with a single period are theoretically analyzed. Experimentally, the harmonic wave generated by second-harmonic generation in type 0 and type I exhibits a narrow bandwidth of 15.

View Article and Find Full Text PDF

Asymmetric control of light with nonlinear material is of great significance in the design of novel micro-photonic components, such as asymmetric imaging devices and nonreciprocal directional optical filters. However, the use of nonlinear photonic crystals for asymmetric optical transmission, to the best of our knowledge, is still an untouched area of research. Herein we propose the 3D nonlinear detour phase holography for realizing asymmetric SH wavefront shaping by taking advantage of the dependence of the SH phase on the propagation direction of the excitation beam.

View Article and Find Full Text PDF

We demonstrate first-order quasi-phase-matched backward second-harmonic generation (BSHG) with an efficiency of 18.7%. This represents an increase by two orders of magnitude from earlier experiments employing higher-order quasi-phase-matching.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!