We report that liquid crystal elastomers (LCEs), often portrayed as artificial muscles, serve as scaffolds for skeletal muscle cell. A simultaneous microemulsion photopolymerization and cross-linking results in nematic LCE microspheres 10-30 μm in diameter that when conjoined form a LCE construct that serves as the first proof-of-concept for responsive LCE muscle cell scaffolds. Confocal microscopy experiments clearly established that LCEs with a globular, porous morphology permit both attachment and proliferation of C2C12 myoblasts, while the nonporous elastomer morphology, prepared in the absence of a microemulsion, does not. In addition, cytotoxicity and proliferation assays confirm that the liquid crystal elastomer materials are biocompatible promoting cellular proliferation without any inherent cytotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b04208 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!