Can Riboflavin Penetrate Stroma Without Disrupting Integrity of Corneal Epithelium in Rabbits? Iontophoresis and Ultraperformance Liquid Chromatography With Electrospray Ionization Tandem Mass Spectrometry.

Cornea

*Department of Ophthalmology, Gazi University School of Medicine, Ankara, Turkey; †Mugla School of Health Sciences, Mugla Sitki Kocman University, Mugla, Turkey; ‡Mugla Vocational School, Mugla Sitki Koçman University, Mugla, Turkey; and §Department of Medical Biochemistry, Gazi University School of Medicine, Ankara, Turkey.

Published: August 2015

Purpose: To examine riboflavin concentrations in corneas and aqueous humor from rabbits with standard and transepithelial methods and iontophoresis without disrupting the integrity of the corneal epithelium before corneal collagen cross-linking.

Methods: Twenty-four eyes of 12 adult New Zealand rabbits were used. They were assigned to 4 groups, each including 6 eyes. Group 1 was exposed to the standard method and given riboflavin 0.1% after epithelial debridement. Group 2 was exposed to the transepithelial method and given benzalkonium chloride (BAC), ethylenediaminetetraacetic acid (EDTA), trometamol (TRIS), hydroxypropylmethylcellulose (HPMC), and riboflavin 0.2% 3 times at 1.5-minute intervals followed by riboflavin 0.2%. Group 3 was given riboflavin 0.1% by using 1-mA electric current for 10 minutes with the help of iontophoresis without using substances disrupting the integrity of the corneal epithelium. Group 4 received the same treatment as did group 3, except that it was given riboflavin 0.2%. Following these treatments, riboflavin concentrations in aqueous humor and corneas were measured with ultraperformance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS).

Results: Riboflavin concentrations in the cornea and aqueous humor were higher in group 1 (42.4 ± 5.4 μg/g) than in the other groups. They were significantly higher in group 4 (34.2 ± 6.6 μg/g) than in group 2 (24.4 ± 1.2 μg/g) (P = 0.009) and group 3 (23.6 ± 6.1 μg/g) (P = 0.026). There was not a significant difference in corneal riboflavin concentrations between group 2 and group 3 (P = 0.937).

Conclusions: Intrastromal and aqueous riboflavin concentrations after administration of riboflavin 0.2% through iontophoresis without disrupting the integrity of the corneal epithelium were lower than those after the standard method, but higher than those after the transepithelial method. In this study, in which riboflavin concentrations were measured with a very sensitive method, iontophoresis was observed to increase the transmission of riboflavin molecules into the cornea without using substances disrupting epithelial integrity.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ICO.0000000000000438DOI Listing

Publication Analysis

Top Keywords

riboflavin concentrations
24
disrupting integrity
16
integrity corneal
16
corneal epithelium
16
riboflavin 02%
16
riboflavin
14
aqueous humor
12
group
11
ultraperformance liquid
8
liquid chromatography
8

Similar Publications

Arsenic is a common toxic heavy metal contaminant that is widely present in the ocean, and seaweeds have a strong ability to concentrate arsenic, posing a potential risk to human health. This study first analyzed the arsenic content in two different seaweeds and then used an innovative method to categorize the seaweeds into low-arsenic and high-arsenic groups based on their arsenic exposure levels. Finally, a non-targeted metabolomic analysis based on mass spectrometry was conducted on seaweed from different arsenic exposure groups.

View Article and Find Full Text PDF

Molecular mechanisms of libido influencing semen quality in geese through the hypothalamic-pituitary-testicular-external genitalia axis.

Poult Sci

December 2024

Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China. Electronic address:

Libido plays a crucial role in influencing semen quality, yet the underlying regulatory mechanisms remain unclear. As a central axis in male goose reproduction, the hypothalamic-pituitary-testicular-external genitalia (HPTE) axis may contribute to the regulation of this process. In this study, we established a rating scale for goose libido based on average number of massages to erection (ANM) and the erection type, and evaluated semen quality across the entire flock.

View Article and Find Full Text PDF
Article Synopsis
  • MZGW (Modified Zuo Gui Wan) combines traditional herbal treatment and red yeast rice, showing promise in treating osteoporosis (OP) through its effects on osteoclasts.
  • Research utilized both in vivo (OVX rat model) and in vitro (RANKL-induced osteoclasts) experiments to understand MZGW's mechanisms, particularly focusing on the SCFA-GPR41-p38MAPK signaling pathway.
  • Results indicated that the high-dose MZGW improved bone microstructure and inhibited osteoclast activity by changing gut flora metabolism and effectively regulating specific signaling pathways.
View Article and Find Full Text PDF

Underground Reservoirs Regulate the Composition and Metabolism of Microbial Community in Coal Mine Water.

ACS Omega

December 2024

State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China.

Article Synopsis
  • Underground reservoirs in coal mines are effective in purifying mine water, significantly reducing chemical oxygen demand (COD) and regulating water chemistry.
  • The study analyzed influent and effluent samples from seven mining areas, noting that improvements in water quality can alter microbial community composition and metabolic activity.
  • Effluent samples showed higher concentrations of specific metabolites linked to various metabolic pathways, revealing important connections between water treatment processes and changes in microbial ecology.
View Article and Find Full Text PDF

Despite all debates about its safe use, glyphosate remains the most widely applied active ingredient in herbicide products, with renewed approval in the European Union until 2033. Non-target organisms are commonly exposed to glyphosate as a matter of its mode of application, with its broader environmental and biological impacts remaining under investigation. Glyphosate displays structural similarity to phosphoenolpyruvate (PEP), thereby competitively inhibiting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), crucial for the synthesis of aromatic amino acids in plants, fungi, bacteria, and archaea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!