Single nucleotide polymorphisms (SNPs) are important markers in many studies that link DNA sequence variations to phenotypic changes; such studies are expected to advance the understanding of human physiology and elucidate the molecular basis of diseases. The DFNB1 locus, which contains the GJB2 and GJB6 genes, plays a key role in nonsyndromic hearing loss. Previous studies have identified important mutations in this locus, but the contribution of SNPs in the genes has not yet been much investigated. The aim of this study was to investigate the association of nine polymorphisms located within the DFNB1 locus with the occurrence of autosomal recessive nonsyndromic hearing loss (ARNSHL). The SNPs rs3751385 (C/T), rs7994748 (C/T), rs7329857 (C/T), rs7987302 (G/A), rs7322538 (G/A), rs9315400 (C/T), rs877098 (C/T), rs945369 (A/C), and rs7333214 (T/G) were genotyped in 122 deaf patients and 132 healthy controls using allele-specific PCR. There were statistically significant differences between patients and controls, in terms of allelic frequencies in the SNPs rs3751385, rs7994748, rs7329857, rs7987302, rs945369, and rs7333214 (P < 0.05). No significant differences between the two groups were observed for rs7322538, rs9315400, and rs877098. Our results suggest that SNPs present in the GJB2 and GJB6 genes may have an influence on ARNSHL in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449875 | PMC |
http://dx.doi.org/10.1155/2015/318727 | DOI Listing |
BMC Ecol Evol
January 2025
College of Life Sciences, Qufu Normal University, Qufu, 273165, China.
Background: Semi-aquatic mammals represent a transitional phase in the evolutionary spectrum between terrestrial and aquatic mammals. The sense of balance is crucial for mammalian locomotion, and in semi-aquatic mammals, the structural foundation of this sense (the vestibular system) shows distinct morphological adaptations to both aquatic and terrestrial environments compared to their terrestrial counterparts. Despite this, the precise molecular mechanisms driving these adaptations remain elusive.
View Article and Find Full Text PDFFront Genet
October 2024
Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
Free Radic Biol Med
November 2024
Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China. Electronic address:
J Gen Physiol
November 2024
Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
Iran J Public Health
February 2024
Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!