To study the effect of Huangzhi oral liquid (HZOL) on I/R after 2 h and 4 h and determine its regulatory function on caspase-3 and protein networks. 70 SD male rats were randomly divided into seven groups and established myocardial I/R injury model by ligating the left anterior descending coronary artery. Myocardial infarction model was defined by TTC staining and color of the heart. The levels of CK-MB, CTnI, C-RPL, SOD, and MDA were tested at 2 h and 4 h after reperfusion. HE staining and ultramicrostructural were used to observe the pathological changes. The apoptotic index (AI) of cardiomyocyte was marked by TUNEL. The expression levels of caspase-3, p53, fas, Bcl-2, and Bax were tested by immunohistochemistry and western blot. HZOL corrected arrhythmia, improved the pathologic abnormalities, decreased CK-MB, CTnI, C-RPL, MDA, AI, caspase-3, p53, fas, and Bax, and increased SOD ans Bcl-2 with different times of myocardial reperfusion; this result was similar to the ISMOC (P > 0.05). HZOL could inhibit arrhythmia at 2 and 4 h after I/R and ameliorate cardiac function, which was more significant at 4 h after reperfusion. This result may be related to decreased expression of caspase-3, p53, and fas and increased Bcl-2/Bax ratio.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449909PMC
http://dx.doi.org/10.1155/2015/518926DOI Listing

Publication Analysis

Top Keywords

caspase-3 p53
12
p53 fas
12
huangzhi oral
8
oral liquid
8
2 h 4 h
8
ck-mb ctni
8
ctni c-rpl
8
4 h reperfusion
8
reperfusion result
8
caspase-3
5

Similar Publications

Effect of ΔNp63β on cell cycle and apoptosis in T98G cells.

Turk J Med Sci

December 2024

Department of Microbiology, Faculty of Medicine, Ankara University, Ankara, Turkiye.

Background/aim: The p53 protein, a crucial tumor suppressor, governs cell cycle regulation and apoptosis. Similarly, p63, a member of the p53 family, exhibits traits of both tumor suppression and oncogenic behavior through its isoforms. However, the functional impact of ΔNp63β, an isoform of the p63 protein, on human glioma cancer cells like T98G cells remains poorly understood, representing the novelty of this study in the current literature.

View Article and Find Full Text PDF

Acetylation of E2F1 at K125 facilitates cell apoptosis under serum stress.

Transl Oncol

December 2024

Department of General Surgery, Sanmen People's Hospital, Sanmen 317100, China. Electronic address:

Article Synopsis
  • E2F1 is a vital transcription factor involved in regulating the cell cycle and is often found at high levels in cancer cells.
  • Recent research indicates that E2F1 can also trigger apoptosis (cell death) under stress conditions, posing a dual role in cell survival and death.
  • This study reveals that acetylation of E2F1 at K125 during serum stress enhances its ability to promote the expression of Fas and BAX, leading to the activation of caspase-3 and apoptosis in liver cancer cells.
View Article and Find Full Text PDF

Background: The tumor suppressor wild-type p53 is known for its role in inducing apoptosis in tumor cells. This study investigated the relationship between wild-type p53 and protein phosphatase 1 (PP1) and caspase in promoting apoptosis of breast cancer cells.

Methods: Human breast cancer cell lines MCF-7 and MDA-MB-231 obtained from the American Type Culture Collection were used in this study.

View Article and Find Full Text PDF

Background: Doxorubicin-induced cardiotoxicity is still an important medical problem associated with a high mortality rate in cancer survivors. p53 plays a key role in doxorubicin-induced cardiotoxicity. Diacylglycerol kinase ζ (Dgkζ), a 130-kDa enzyme abundant in cardiomyocytes, regulates the p53 protein expression level in neurons.

View Article and Find Full Text PDF

Enzyme-Responsive Nanoparachute for Targeted miRNA Delivery: A Protective Strategy Against Acute Liver and Kidney Injury.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China.

MicroRNA (miRNA)-based therapy holds significant potential; however, its structural limitations pose a challenge to the full exploitation of its biomedical functionality. Framework nucleic acids are promising owing to their transportability, biocompatibility, and functional editability. MiRNA-125 is embedded into a nucleic acid framework to create an enzyme-responsive nanoparachute (NP), enhancing the miRNA loading capacity while preserving the attributes of small-scale framework nucleic acids and circumventing the uncertainty related to RNA exposure in conventional loading methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!