Automatic target validation based on neuroscientific literature mining for tractography.

Front Neuroanat

Laboratoire de Recherche Neuroimagerie, Université de Lausanne Lausanne, Switzerland ; Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne Lausanne, Switzerland ; Département de Neurochirurgie, Hôpital Gui de Chauliac, Centre Hospitalier Régional Universitaire de Montpellier, Université Montpellier 1 Montpellier, France.

Published: June 2015

AI Article Synopsis

  • Identifying targets for tractography studies can be time-consuming and subjective with manual literature reviews, so this research proposes using text-mining models to streamline the process.
  • The study focuses on three brain structures: the internal globus pallidus, subthalamic nucleus, and nucleus accumbens, applying text-mining to uncover potential connectivity targets.
  • Results showed that text-mining could identify three times more targets than traditional curation and achieved a 98% recall rate, suggesting it’s a highly efficient tool for neuroscience research.

Article Abstract

Target identification for tractography studies requires solid anatomical knowledge validated by an extensive literature review across species for each seed structure to be studied. Manual literature review to identify targets for a given seed region is tedious and potentially subjective. Therefore, complementary approaches would be useful. We propose to use text-mining models to automatically suggest potential targets from the neuroscientific literature, full-text articles and abstracts, so that they can be used for anatomical connection studies and more specifically for tractography. We applied text-mining models to three structures: two well-studied structures, since validated deep brain stimulation targets, the internal globus pallidus and the subthalamic nucleus and, the nucleus accumbens, an exploratory target for treating psychiatric disorders. We performed a systematic review of the literature to document the projections of the three selected structures and compared it with the targets proposed by text-mining models, both in rat and primate (including human). We ran probabilistic tractography on the nucleus accumbens and compared the output with the results of the text-mining models and literature review. Overall, text-mining the literature could find three times as many targets as two man-weeks of curation could. The overall efficiency of the text-mining against literature review in our study was 98% recall (at 36% precision), meaning that over all the targets for the three selected seeds, only one target has been missed by text-mining. We demonstrate that connectivity for a structure of interest can be extracted from a very large amount of publications and abstracts. We believe this tool will be useful in helping the neuroscience community to facilitate connectivity studies of particular brain regions. The text mining tools used for the study are part of the HBP Neuroinformatics Platform, publicly available at http://connectivity-brainer.rhcloud.com/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445321PMC
http://dx.doi.org/10.3389/fnana.2015.00066DOI Listing

Publication Analysis

Top Keywords

literature review
16
text-mining models
16
literature
8
neuroscientific literature
8
nucleus accumbens
8
three selected
8
text-mining literature
8
text-mining
7
targets
6
review
5

Similar Publications

Neurodegenerative diseases are significant health concerns that have a profound impact on the quality and duration of life for millions of individuals. These diseases are characterized by pathological changes in various brain regions, specific genetic mutations associated with the disease, deposits of abnormal proteins, and the degeneration of neurological cells. As neurodegenerative disorders vary in their epidemiological characteristics and vulnerability of neurons, treatment of these diseases is usually aimed at slowing disease progression.

View Article and Find Full Text PDF

KRAS is a proto-oncogene that is found to be mutated in 15% of all metastatic cancers with high prevalence in pancreatic, lung, and colorectal cancers. Additionally, patients harboring KRAS mutations respond poorly to standard cancer therapy. As a result, KRAS is seen as an attractive target for targeted anticancer therapy.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (Mtb) complex, responsible for tuberculosis (TB) infection, continues to be a predominant global cause of mortality due to intricate host-pathogen interactions that affect disease progression. MicroRNAs (miRNAs), essential posttranscriptional regulators, have become pivotal modulators of these relationships. Recent findings indicate that miRNAs actively regulate immunological responses to Mtb complex by modulating autophagy, apoptosis, and immune cell activities.

View Article and Find Full Text PDF

Human liver cell-based assays for the prediction of hepatic bile acid efflux transporter inhibition by drugs.

Expert Opin Drug Metab Toxicol

January 2025

Institut de R&D Servier, Paris-Saclay, F-91190 Gif-sur-Yvette, France.

Introduction: Drug-mediated inhibition of bile salt efflux transporters may cause liver injury. In vitro prediction of drug effects toward canalicular and/or sinusoidal efflux of bile salts from human hepatocytes is therefore a major issue, which can be addressed using liver cell-based assays.

Area Covered: This review, based on a thorough literature search in the scientific databases PubMed and Web of Science, provides key information about hepatic transporters implicated in bile salt efflux, the human liver cell models available for investigating functional inhibition of bile salt efflux, the different methodologies used for this purpose, and the modes of expression of the results.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!