We demonstrate an experimental technique to generate and measure arbitrary superpositions of core modes in a multi-core fiber. Two spatial light modulators couple the fundamental mode of a single-mode fiber with multiple-core modes of the MCF to constitute a Mach-Zehnder-type multi-path interferometer. The phase tunability of each path is verified by comparing two-, three-, and four-path interference patterns with the theory. Interference fringes in the wavelength domain estimates the inter-core group index differences with a resolution of 10(-5) using a fiber length of 1 m.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.23.012555 | DOI Listing |
Nanophotonics
March 2024
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
We report the fabrication and characterization of a multi-core anti-resonant hollow core fiber with low inter-core coupling. The optical losses were 0.03 and 0.
View Article and Find Full Text PDFMulti-core few-mode fiber based on space division multiplexing technology is widely regarded as the primary solution to the optical communication capacity issue. However, the quality of the communication signal of the multi-core few-mode fiber depends on the degree of energy coupling between the cores. Thus, we propose a heterogeneous sixteen-core four-mode fiber that achieves low inter-core crosstalk, which first employs a combination of concave and convex double-type refractive index profiles.
View Article and Find Full Text PDFWe demonstrate simultaneous radio-/pump-/power-over-fiber transmission using a single multi-core fiber for downlink radio-over-fiber transmission. This scheme not only introduces a remotely pumped optical amplifier to eliminate electrical power amplifiers (PAs) in radio units (RUs) but also drives a high-power photodiode, which is the main component of the RU by power-over-fiber. Using this scheme, we achieved a 20-dB improvement in the RF output signal power using a remotely pumped optical amplifier without electrical PAs in the optically powered RU.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!