Current reconstructive techniques for complex craniofacial osseous defects are challenging and are associated with significant morbidity. Oxysterols are naturally occurring cholesterol oxidation products with osteogenic potential. In this study, we investigated the effects of a novel semi-synthetic oxysterol, Oxy133, on in vitro osteogenesis and an in vivo intramembranous bone-healing model. Rabbit bone marrow stromal cells (BMSCs) were treated with either Oxy133 or BMP-2. Alkaline phosphatase (ALP) activity, expression of osteogenic gene markers and in vitro mineralization were all examined. Next, collagen sponges carrying either Oxy133 or BMP-2 were used to reconstruct critical-sized cranial defects in mature rabbits and bone regeneration was assessed. To determine the mechanism of action of Oxy133 both in vitro and in vivo, rabbit BMSCs cultures and collagen sponge/Oxy133 implants were treated with the Hedgehog signalling pathway inhibitor, cyclopamine, and similar outcomes were measured. ALP activity in rabbit BMSCs treated with 1 μm Oxy133 was induced and was significantly higher than in control cells. These results were mitigated in cultures treated with cyclopamine. Expression of osteogenic gene markers and mineralization in BMSCs treated with 1 μm Oxy133 was significantly higher than in control groups. Complete bone regeneration was noted in vivo when cranial defects were treated with Oxy133; healing was incomplete, however, when cyclopamine was added. Collectively, these results demonstrate that Oxy133 has the ability to induce osteogenic differentiation in vitro in rabbit BMSCs and to promote robust bone regeneration in vivo in an animal model of intramembranous bone healing. Copyright © 2015 John Wiley & Sons, Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/term.2047 | DOI Listing |
Front Biosci (Elite Ed)
October 2024
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1983969411 Tehran, Iran.
Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.
Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.
Indian J Orthop
January 2025
Ortho One Orthopaedic Specialty Centre, Coimbatore, India.
Introduction: Interspace defects after osteochondral autograft transfer (OATS) are filled only with fibrocartilage. Attempts have been made to address these issues in OATS with procedures like mega OATS and Hexagonal Osteochondral Graft System. We have described the functional outcomes of a hybrid technique combining a regeneration and a restoration modality to address the interspace defect in OATS.
View Article and Find Full Text PDFBioact Mater
March 2025
College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China.
Bioactive ceramics have been used in bone tissue repair and regeneration. However, because of the complex in vivo osteogenesis process, long cycle, and difficulty of accurately tracking, the mechanism of interaction between materials and cells has yet to be fully understood, hindering its development. The ceramic microbridge microfluidic chip system may solve the problem and provide an in vitro method to simulate the microenvironment in vivo.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
Purpose: Successful regeneration of cranial defects necessitates the use of porous bone fillers to facilitate cell proliferation and nutrient diffusion. Open porous microspheres, characterized by their high specific surface area and osteo-inductive properties, offer an optimal microenvironment for cell ingrowth and efficient ossification, potentially accelerating bone regeneration.
Materials And Methods: An in vitro investigation was conducted to assess the physicochemical properties, porosity, and biocompatibility of PHA-nano-clay open porous microspheres.
World J Cardiol
December 2024
Department of Geriatics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China.
In this article, we evaluate the comparative efficacy and safety of mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and umbilical cord (UC-MSCs) in the treatment of heart failure and myocardial infarction. MSCs have gained importance as living bio drug due to their regenerative potential, with BM-MSCs being the most extensively studied. However, UC-MSCs offer unique advantages, such as noninvasive collection and fewer ethical concerns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!