AI Article Synopsis

  • - The study focuses on creating and testing three types of fluorescent N-alkyl cyclophellitol aziridine probes to study specific enzymes: β-glucosidase (GBA), α-galactosidase (GLA), and α-fucosidase (FUCA).
  • - These N-alkyl aziridine probes are easier to synthesize and more stable in various conditions compared to previously developed acyl aziridine probes, making them more user-friendly.
  • - The N-alkyl variant effectively labels GBA, similar to its N-acyl equivalent, while N-acyl probes perform better for GLA and FUCA, suggesting that both probe types should be used in future enzyme studies.

Similar Publications

Examining structure-activity relationships of ManNAc analogs used in the metabolic glycoengineering of human neural stem cells.

Biomater Adv

December 2024

Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA. Electronic address:

This study defines biochemical mechanisms that contribute to novel neural-regenerative activities we recently demonstrated for thiol-modified ManNAc analogs in human neural stem cells (hNSCs) by comparing our lead drug candidate for brain repair, "TProp," to a "size-matched" N-alkyl control analog, "But." These analogs biosynthetically install non-natural sialic acids into cell surface glycans, altering cell surface receptor activity and adhesive properties of cells. In this study, TProp modulated sialic acid-related biology in hNSCs to promote neuronal differentiation through modulation of cell adhesion molecules (integrins α6, β1, E-cadherin, and PSGL-1) and stem cell markers.

View Article and Find Full Text PDF

-Acyl--alkyl/aryl Sulfonamide Chemistry Assisted by Proximity for Modification and Covalent Inhibition of Endogenous Proteins in Living Systems.

Acc Chem Res

January 2025

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.

ConspectusSelective chemical modification of endogenous proteins in living systems with synthetic small molecular probes is a central challenge in chemical biology. Such modification has a variety of applications important for biological and pharmaceutical research, including protein visualization, protein functionalization, proteome-wide profiling of enzyme activity, and irreversible inhibition of protein activity. Traditional chemistry for selective protein modification in cells largely relies on the high nucleophilicity of cysteine residues to ensure target-selectivity and site-specificity of modification.

View Article and Find Full Text PDF

Original covalent probes with an N-acyl-N-alkyl sulfonamide cleavable linker were developed to target a broad set of human Matrix Metalloproteases (MMPs). The electrophilicity of this cleavable linker was modulated to improve the selectivity of the probes as well as reduce their unspecific reactivity in complex biological matrices. We first demonstrated that targeting the S subsite of MMPs enables access to broad-spectrum affinity-based probes that exclusively react with the active version of these proteases.

View Article and Find Full Text PDF

-Acyl--Alkyl Sulfonamide Probes for Ligand-Directed Covalent Labeling of GPCRs: The Adenosine A Receptor as Case Study.

ACS Chem Biol

July 2024

Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.

Small molecular tool compounds play an essential role in the study of G protein-coupled receptors (GPCRs). However, tool compounds most often occupy the orthosteric binding site, hampering the study of GPCRs upon ligand binding. To overcome this problem, ligand-directed labeling techniques have been developed that leave a reporter group covalently bound to the GPCR, while allowing subsequent orthosteric ligands to bind.

View Article and Find Full Text PDF

We describe the novel electrochemical multicomponent reaction (e-MCR) of readily available isocyanides, thiols and carboxylic acids to form -substituted -thiocarbamate derivatives that are found in several biologically active compounds. The effectiveness of the μ-electro flow reactor (μ-EFR) was showcased through significant reduction in electrolyte volume during the reaction, achieving gram-scale production of 4a within a short 12 min residence time using a Pt/Pt flow cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!