Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To investigate if aluminium (Al) modifies the rainbow trout response to radiation exposure and/or the induction of a radiation-induced bystander effect.
Methods: Rainbow trout were exposed to 100 or 200 μg l(-1) Al (for 3 h), a 0.5 Gy X-ray dose or Al followed immediately by irradiation. The exposed fish were then swum with completely untreated bystander fish. A human reporter cell clonogenic assay was used to determine whether Al exposure modified the effects of irradiation on the skin and gills from directly exposed fish and also the radiation-induced bystander effect in untreated fish.
Results: Al exposure did not modify the response to direct irradiation by the skin, or the gill. Al did not modify the bystander effect in the skin. However Al did modify the bystander effect in the gill. Gills of bystander fish swum with fish exposed to 200 μg l(-1) Al, followed by irradiation, caused a greater reduction in HPV-G cell survival than was caused by irradiation only. Interestingly Al exposure only also caused a bystander effect (reduced HPV-G survival) in the gill.
Conclusion: This study shows that, in a multiple stressor scenario, the communication of radiation-induced stress signals is modified on a tissue-specific basis by acute Al exposure. Aside from the implications this has for radiological protection this response may also have potential for environmental monitoring where detection of the bystander effect could act as an indicator of radiation exposure when direct exposure responses are not evident.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/09553002.2015.1062573 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!