Vaccination with cyclin-dependent kinase tick antigen confers protection against Ixodes infestation.

Vet Parasitol

Laboratory of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo 060-0818, Japan.

Published: July 2015

AI Article Synopsis

  • Ticks are major carriers of animal diseases and rank just below mosquitoes for spreading human pathogens.
  • Researchers investigated cyclin-dependent kinases (CDKs), which regulate the cell cycle in organisms, as potential targets for anti-tick vaccines.
  • Immunization with a specific CDK from the tick species Ixodes persulcatus led to significant reductions in tick feeding and reproduction, suggesting that targeting CDKs could enhance the effectiveness of anti-tick vaccines.

Article Abstract

Among arthropods, ticks lead as vectors of animal diseases and rank second to mosquitoes in transmitting human pathogens. Cyclin-dependent kinases (CDK) participate in cell cycle control in eukaryotes. CDKs are serine/threonine protein kinases and these catalytic subunits are activated or inactivated at specific stages of the cell cycle. To determine the potential of using CDKs as anti-tick vaccine antigens, hamsters were immunized with recombinant Ixodes persulcatus CDK10, followed by a homologous tick challenge. Though it was not exactly unexpected, IpCDK10 vaccination significantly impaired tick blood feeding and fecundity, which manifested as low engorgement weights, poor oviposition, and a reduction in 80% of hatching rates. These findings may underpin the development of more efficacious anti-tick vaccines based on the targeting of cell cycle control proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetpar.2015.05.022DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
cycle control
8
vaccination cyclin-dependent
4
cyclin-dependent kinase
4
kinase tick
4
tick antigen
4
antigen confers
4
confers protection
4
protection ixodes
4
ixodes infestation
4

Similar Publications

Background: Premature ovarian insufficiency (POI) is a refractory disease that severely affects female fertility. The PERK/eIF-2α/ATF4/CHOP pathway is one of the classical pathways involved in the unfolded protein response to endoplasmic reticulum stress by regulating protein synthesis and promoting apoptosis. This study aimed to investigate the functional role and mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in the POI animal model through the PERK/eIF-2α/ATF4/CHOP pathway.

View Article and Find Full Text PDF

RTEL1 is upregulated in gastric cancer and promotes tumor growth.

J Cancer Res Clin Oncol

December 2024

Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Wuxi, Jiangsu, 214062, China.

Gastric cancer (GC) is one of the most common cancers worldwide, with increasing incidence and mortality rates. It is typically diagnosed at advanced stages, leading to a poor prognosis. GC is a highly heterogeneous disease and its progression is associated with complex interplay between genetic and environmental factors.

View Article and Find Full Text PDF

Allium chromosome evolution and DNA sequence localization.

Mol Biol Rep

December 2024

Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, LE1 7RH, UK.

Background: Molecular cytogenetics, utilizing DNA probes, serves as a critical tool for mapping genes to the physical structures of chromosomes.

Methods: In this study, we examined three Allium species: A. cepa L.

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bnAbs) against HIV-1 have been shown to protect from systemic infection. When employing a novel challenge virus that uses HIV-1 Env for entry into target cells during the first replication cycle, but then switches to SIV Env usage, we demonstrated that bnAbs also prevented mucosal infection of the first cells. However, it remained unclear whether antibody Fc-effector functions contribute to this sterilizing immunity.

View Article and Find Full Text PDF

Autophagy-dependent survival relies on a crucial oscillatory response during cellular stress. Although oscillatory behaviour is typically associated with processes like the cell cycle or circadian rhythm, emerging experimental and theoretical evidence suggests that such periodic dynamics may explain conflicting experimental results in autophagy research. In this study, we demonstrate that oscillatory behaviour in the regulation of the non-selective, stress-induced macroautophagy arises from a series of interlinked negative and positive feedback loops within the mTORC1-AMPK-ULK1 regulatory triangle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!