We consider Bloch oscillations of ultracold atoms stored in a one-dimensional vertical optical lattice and simultaneously interacting with a unidirectionally pumped optical ring cavity whose vertical arm is collinear with the optical lattice. We find that the feedback provided by the cavity field on the atomic motion synchronizes Bloch oscillations via a mode-locking mechanism, steering the atoms to the lowest Bloch band. It also stabilizes Bloch oscillations against noise, and even suppresses dephasing due to atom-atom interactions. Furthermore, it generates periodic bursts of light emitted into the counter-propagating cavity mode, providing a non-destructive monitor of the atomic dynamics. All these features may be crucial for future improvements of the design of atomic gravimeters based on recording Bloch oscillations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.23.014823 | DOI Listing |
Neural Netw
January 2025
Department of Mathematical Sciences, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi, Uttar Pradesh, 229304, India. Electronic address:
In this paper, we introduce the concept of (ω,c)-asymptotic periodicity within the context of translation-invariant time scales. This concept generalizes various types of function, including asymptotically periodic, asymptotically antiperiodic, asymptotically Bloch periodic, and certain unbounded functions on time scales. We investigate some fundamental properties of this class of functions and apply our findings to cellular neural network (CNN) dynamic equations with leakage and mixed time-varying delays.
View Article and Find Full Text PDFHere we experimentally demonstrate the dynamics of Bloch-Zener oscillations (BZOs) in a synthetic temporal lattice formed by the optical pulses in coupled fiber loops. By periodically modulating the phases imposed to the optical pulses in linear driven lattices, a two-band Floquet system with tunable bandgaps is realized, and the related BZOs that occurred in this system are displayed. On this basis, by manipulating the phase difference and coupling angle of the synthetic lattice, the widths of 0-gap and -gap are tuned feasibly so that a wide variety of the interplays between Bloch oscillations and Landau-Zener tunneling (LZT) are exhibited.
View Article and Find Full Text PDFNanophotonics
January 2024
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
Optical skyrmions, which are topological quasi-particles with nontrivial electromagnetic textures, have garnered escalating research interest recently for their potential in diverse applications. In this paper, we present a method for generating tightly focused optical skyrmion and meron topologies formed by electric-field vectors under 4-focusing system, where both the topology types (including Néel-, Bloch-, intermediate- and anti-skyrmion/meron) and the normal direction of the two-dimensional topology projection plane can be tailored at will. By utilizing time-reversal techniques, we analytically derive the radiation pattern of a multiple concentric-ring array of dipoles (MCAD) to obtain the required illumination fields on the pupil planes of the two high numerical aperture lenses.
View Article and Find Full Text PDFNat Commun
October 2024
Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
Synchronization of Bloch oscillations in small Josephson junctions (JJs) under microwave radiation, which leads to current quantization, has been proposed as an effect that is dual to the appearance of Shapiro steps. This current quantization was recently demonstrated in superconducting nanowires in a compact high-impedance environment. Direct observation of current quantization in JJs would confirm the synchronization of Bloch oscillations with microwaves and help with the realisation of the metrological current standard.
View Article and Find Full Text PDFEntropy (Basel)
October 2024
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!