We experimentally investigate single-parity check (SPC) coded spatial superchannels based on polarization-multiplexed 16-ary quadrature amplitude modulation (PM-16QAM) for multicore fiber transmission systems, using a 7-core fiber. We investigate SPC over 1, 2, 4, 5 or 7 cores in a back-to-back configuration and compare the sensitivity to uncoded PM-16QAM, showing that at symbol rates of 20 Gbaud and at a bit-error-rate (BER) of 10, the SPC superchannels exhibit sensitivity improvements of 2.7 dB, 2.0 dB, 1.7 dB, 1.3 dB, and 1.1 dB, respectively. We perform both single channel and wavelength division multiplexed (WDM) transmission experiments with 22 GHz channel spacing and 20 Gbaud channel symbol rate for SPC over 1, 3 and 7 cores and compare the results to PM-16QAM with the same spacing and symbol rate. We show that in WDM signals, SPC over hl1 core can achieve more than double the transmission distance compared to PM-16QAM at the cost of 0.91 bit/s/Hz/core in spectral efficiency (SE). When sharing the parity-bit over 7 cores, the loss in SE becomes only 0.13 bit/s/Hz/core while the increase in transmission reach over PM-16QAM is 44 %.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.23.014569 | DOI Listing |
Celebrating the 20 anniversary of Optics Express, this paper reviews the evolution of optical fiber communication systems, and through a look at the previous 20 years attempts to extrapolate fiber-optic technology needs and potential solution paths over the coming 20 years. Well aware that 20-year extrapolations are inherently associated with great uncertainties, we still hope that taking a significantly longer-term view than most texts in this field will provide the reader with a broader perspective and will encourage the much needed out-of-the-box thinking to solve the very significant technology scaling problems ahead of us. Focusing on the optical transport and switching layer, we cover aspects of large-scale spatial multiplexing, massive opto-electronic arrays and holistic optics-electronics-DSP integration, as well as optical node architectures for switching and multiplexing of spatial and spectral superchannels.
View Article and Find Full Text PDFWe experimentally investigate single-parity check (SPC) coded spatial superchannels based on polarization-multiplexed 16-ary quadrature amplitude modulation (PM-16QAM) for multicore fiber transmission systems, using a 7-core fiber. We investigate SPC over 1, 2, 4, 5 or 7 cores in a back-to-back configuration and compare the sensitivity to uncoded PM-16QAM, showing that at symbol rates of 20 Gbaud and at a bit-error-rate (BER) of 10, the SPC superchannels exhibit sensitivity improvements of 2.7 dB, 2.
View Article and Find Full Text PDFWe investigate high dimensional modulation formats for multi-core fibers (MCFs) and spatial superchannels. We show that the low skew variations between MCF cores maybe exploited to generate 'multi-core' formats that offer significant advantages over independently transmitting conventional 4-dimensional formats in each core. We describe how pulse position modulation formats may be transposed to the spatial domain and then investigate a family of modulation formats referred to as core-coding, one of which has the same power and spectral efficiency as polarization switched quaternary phase shift keying but with half of the optical power, potentially improving non-linear tolerance for long distance transmission, albeit at the cost of implementation challenges.
View Article and Find Full Text PDFWe present results from the first demonstration of a fully integrated SDN-controlled bandwidth-flexible and programmable SDM optical network utilizing sliceable self-homodyne spatial superchannels to support dynamic bandwidth and QoT provisioning, infrastructure slicing and isolation. Results show that SDN is a suitable control plane solution for the high-capacity flexible SDM network. It is able to provision end-to-end bandwidth and QoT requests according to user requirements, considering the unique characteristics of the underlying SDM infrastructure.
View Article and Find Full Text PDFWe demonstrate an 11 port count wavelength selective switch (WSS) supporting spatial superchannels of three spatial modes, based on the combination of photonic lanterns and a high-port count single-mode WSS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!