Streptomyces coelicolor (Sco) GlgEI is a glycoside hydrolase involved in α-glucan biosynthesis and can be used as a model enzyme for structure-based inhibitor design targeting Mycobacterium tuberculosis (Mtb) GlgE. The latter is a genetically validated drug target for the development of anti-Tuberculosis (TB) treatments. Inhibition of Mtb GlgE results in a lethal buildup of the GlgE substrate maltose-1-phosphate (M1P). However, Mtb GlgE is difficult to crystallize and affords lower resolution X-ray structures. Sco GlgEI-V279S on the other hand crystallizes readily, produces high resolution X-ray data, and has active site topology identical to Mtb GlgE. We report the X-ray structure of Sco GlgEI-V279S in complex with 2-deoxy-2,2-difluoro-α-maltosyl fluoride (α-MTF, 5) at 2.3 Å resolution. α-MTF was designed as a non-hydrolysable mimic of M1P to probe the active site of GlgE1 prior to covalent bond formation without disruption of catalytic residues. The α-MTF complex revealed hydrogen bonding between Glu423 and the C1F which provides evidence that Glu423 functions as proton donor during catalysis. Further, hydrogen bonding between Arg392 and the axial C2 difluoromethylene moiety of α-MTF was observed suggesting that the C2 position tolerates substitution with hydrogen bond acceptors. The key step in the synthesis of α-MDF was transformation of peracetylated 2-fluoro-maltal 1 into peracetylated 2,2-difluoro-α-maltosyl fluoride 2 in a single step via the use of Selectfluor®.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489993PMC
http://dx.doi.org/10.1039/c5ob00867kDOI Listing

Publication Analysis

Top Keywords

mtb glge
16
2-deoxy-22-difluoro-α-maltosyl fluoride
8
x-ray structure
8
streptomyces coelicolor
8
resolution x-ray
8
sco glgei-v279s
8
active site
8
hydrogen bonding
8
glge
5
synthesis 2-deoxy-22-difluoro-α-maltosyl
4

Similar Publications

Zwitterionic pyrrolidene-phosphonates: inhibitors of the glycoside hydrolase-like phosphorylase Streptomyces coelicolor GlgEI-V279S.

Org Biomol Chem

May 2017

Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, USA.

We synthesized and evaluated new zwitterionic inhibitors against glycoside hydrolase-like phosphorylase Streptomyces coelicolor (Sco) GlgEI-V279S which plays a role in α-glucan biosynthesis. Sco GlgEI-V279S serves as a model enzyme for validated anti-tuberculosis (TB) target Mycobacterium tuberculosis (Mtb) GlgE. Pyrrolidine inhibitors 5 and 6 were designed based on transition state considerations and incorporate a phosphonate on the pyrrolidine moiety to expand the interaction network between the inhibitor and the enzyme active site.

View Article and Find Full Text PDF

GlgE is a bacterial maltosyltransferase that catalyzes the elongation of a cytosolic, branched α-glucan. In Mycobacterium tuberculosis (M. tb), inactivation of GlgE (Mtb GlgE) results in the rapid death of the organism due to a toxic accumulation of the maltosyl donor, maltose-1-phosphate (M1P), suggesting that GlgE is an intriguing target for inhibitor design.

View Article and Find Full Text PDF

Streptomyces coelicolor (Sco) GlgEI is a glycoside hydrolase involved in α-glucan biosynthesis and can be used as a model enzyme for structure-based inhibitor design targeting Mycobacterium tuberculosis (Mtb) GlgE. The latter is a genetically validated drug target for the development of anti-Tuberculosis (TB) treatments. Inhibition of Mtb GlgE results in a lethal buildup of the GlgE substrate maltose-1-phosphate (M1P).

View Article and Find Full Text PDF

Pharmacophore-based virtual screening, subsequent docking, and molecular dynamics (MD) simulations have been done to identify potential inhibitors of maltosyl transferase of Mycobacterium tuberculosis (mtb GlgE). Ligand and structure-based pharmacophore models representing its primary binding site (pbs) and unique secondary binding site 2 (sbs2), respectively, were constructed based on the three dimensional structure of mtb GlgE. These pharmacophore models were further used for screening of ZINC and antituberculosis compounds database (ATD).

View Article and Find Full Text PDF

Tuberculosis continues to be a deadly infectious disease, mainly due to the existence of persistent bacterial populations that survive drug treatment and obstruct complete eradication of infection. The enzymes GlgE and GlgB, which are involved in the glycan pathway, have recently been identified as promising drug targets for combating persistent bacillus strains. In the glycan pathway, enzymes GlgE, GlgA, and Tre-xyz produce linear α-glucans, which are then converted to essential branched α-glucan by GlgB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!