Introduction: In our previous study, we observed the crosstalk between peroxisome proliferator-activated receptor-γ (PPAR-γ) and angiotensin II in activated renal tubular cells. The present study is aimed to further explore the crosstalk between PPAR-γ and mineralocorticoid receptor (MR) in tumor necrosis factor (TNF)-α activated renal tubular cells.

Methods: Human proximal renal tubular epithelial cells HK-2 were cultured with the pre-treatment of PPAR-γ agonist, pioglitazone (5 μM), MR antagonist, eplerenone (5 μM), or their combined treatment, followed by activation with TNF-α (20 ng/ml). In the parallel experiment, PPAR-γ inhibitor GW9662 (25 µM) was used to study the independence of PPAR-γ. Gene expression and protein synthesis of intercellular adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6), MR and PPAR-γ were measured by RT-PCR, ELISA and Western blot, respectively; nuclear factor κB (NF-κB) nuclear translocation activity in the nucleus was examined by EMSA assay.

Results: TNF-α effectively activated HK-2 cells by up-regulating gene expression and protein synthesis of ICAM-1, IL-6 and MR and down-regulating PPAR-γ in a dose-dependent manner. TNF-α also significantly induced NF-κB nuclear translocation in HK-2 cells. Dual treatment of pioglitazone and eplerenone demonstrated synergistic effect on reducing ICAM-1 and IL-6 expression and alleviating NF-κB activation when compared with their monotherapies in TNF-α activated renal tubular cells. PPAR-γ antagonist, GW9662, significantly attenuated protective effect on ICAM-1, IL-6 and PPAR-γ expression by pioglitazone, eplerenone and their combined treatment.

Conclusions: Our data suggest that pioglitazone, in a PPAR-γ-dependent manner, trans-represses MR signaling by suppressing NF-κB activation. MR antagonist also restored PPAR-γ expression. Dual treatment of pioglitazone and eplerenone present better efficacy in attenuating excessive inflammatory response in activated renal tubular cells under stimulation of TNF-α than single treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00011-015-0838-5DOI Listing

Publication Analysis

Top Keywords

renal tubular
24
activated renal
20
tnf-α activated
12
tubular cells
12
icam-1 il-6
12
pioglitazone eplerenone
12
ppar-γ
10
crosstalk peroxisome
8
peroxisome proliferator-activated
8
proliferator-activated receptor-γ
8

Similar Publications

Luminal flow in the connecting tubule induces afferent arteriole vasodilation.

Clin Exp Nephrol

January 2025

Renal Medicine Division, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, Woodruff Memorial Research Building, Office 338A, Atlanta, GA, 30322, USA.

Background: Renal autoregulatory mechanisms modulate renal blood flow. Connecting tubule glomerular feedback (CNTGF) is a vasodilator mechanism in the connecting tubule (CNT), triggered paracrinally when high sodium levels are detected via the epithelial sodium channel (ENaC). The primary activation factor of CNTGF-whether NaCl concentration, independent luminal flow, or the combined total sodium delivery-is still unclear.

View Article and Find Full Text PDF

Naringenin has the potential to regulate ferroptosis and mitigate renal damage in diabetic nephropathy (DN). However, it remains unclear whether the naringenin's effects in DN are linked to its ability to regulate ferroptosis. This study investigated the potential anti-ferroptosis properties of naringenin in high glucose (HG)-induced renal tubular epithelial cell models.

View Article and Find Full Text PDF

Renal fibrosis (RF) is a crucial pathological factor in the progression of chronic kidney disease (CKD) to end-stage renal failure, and accurate and noninvasive assays to monitor the progression of renal fibrosis are needed. Circular RNAs (circRNAs) are noncoding RNAs that can be used as diagnostic biomarkers and therapeutic targets for human diseases. In this study, we analysed the expression of hsa_circ_0008925 in human urinary renal tubular cells and investigated its role in renal fibrosis.

View Article and Find Full Text PDF

Acute kidney injury (AKI) has been reported to occur in 30-70% of asphyxiated neonates. Hydrogen (H) gas became a major research focus in neonatal medicine after the identification of its robust antioxidative properties. However, the ability of H gas to ameliorate AKI is unknown.

View Article and Find Full Text PDF

IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease.

Inflamm Res

January 2025

Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.

Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!