A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Galectin-3 enhances extracellular matrix associations and wound healing in monkey corneal epithelium. | LitMetric

Galectin-3 enhances extracellular matrix associations and wound healing in monkey corneal epithelium.

Exp Eye Res

Laboratory of Ocular Sciences, Senju Pharmaceutical Corporation Limited, 4640 SW Macadam Ave., Suite 200C, Portland, OR 97239, USA; Department of Integrative Biosciences, Oregon Health & Science University, 2730 SW Moody Ave., Portland, OR 97201, USA. Electronic address:

Published: August 2015

AI Article Synopsis

  • Epithelial wounds in the cornea heal poorly, primarily due to inadequate cell migration, leading to persistent defects and ulceration.
  • Galectin-3, a carbohydrate-binding protein, enhances wound healing by promoting cell adhesion and migration through interactions with extracellular matrices and integrins.
  • Experiments using monkey corneal explants demonstrated that recombinant galectin-3 significantly improved healing rates in wound models and increased adhesion of epithelial cells to the corneal surface.

Article Abstract

Poor healing of epithelial wounds in cornea is a major clinical problem, leading to persistent epithelial defects and ulceration. The primary cause is poor cell migration over the wound. Carbohydrate-binding protein galectin-3 binds to extracellular matrixes (ECMs) and promotes lamellipodia formation by cross-linking to α3 integrin. Recombinant galectin-3 also facilitates wound healing in the rodent cornea. The purposes of the present experiments were to: (1) establish epithelial wound healing models in monkey corneal explant culture, the models more relevant to human, (2) evaluate the healing effect of galectin-3 in our models, and (3) determine if galectin-3 enhances cell adhesion by interacting with ECMs on corneal surface and their ligand integrins. Monkey corneas with central wounds produced by sodium hydroxide (NaOH) or n-heptanol were incubated with or without recombinant galectin-3. The defected area was stained with sodium fluorescein. Primary isolated corneal epithelial cells from monkey were cultured with or without galectin-3 on plates coated with ECMs or integrins, and the number of adhering cells was counted. Galectin-3 expression in various eye tissues was visualized by immunoblotting. NaOH caused loss of epithelial cells and basement membrane. n-Heptanol removed epithelial cells, but the basement membrane was retained. These corneal defects spontaneously became smaller in a time-dependent manner. Exogenous galectin-3 enhanced wound healing in both NaOH and n-heptanol models. Galectin-3 also enhanced cell adhesion onto the major ECMs found in the basement and Bowman's membranes and onto integrins. Relatively high levels of galectin-3 were detected in corneal and conjunctival epithelium, but tear fluid contained negligible galactin-3. These results suggested that the enhanced binding of epithelial cells to ECMs and integrins caused by galectin-3 might promote cell migration over wounded corneal surfaces. Since tear fluid contained relatively low levels of galectin-3, exogenous galectin-3 may be a beneficial drug to enhance re-epithelialization in human corneal diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4760625PMC
http://dx.doi.org/10.1016/j.exer.2015.06.010DOI Listing

Publication Analysis

Top Keywords

wound healing
16
epithelial cells
16
galectin-3
14
galectin-3 enhances
8
corneal
8
monkey corneal
8
cell migration
8
recombinant galectin-3
8
cell adhesion
8
naoh n-heptanol
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!