Amongst the biodiversity components of agriculture, weeds are an interesting model for exploring management options relying on the principle of ecological intensification in arable farming. Weeds can cause severe crop yield losses, contribute to farmland functional biodiversity and are strongly associated with the generic issue of pesticide use. In this paper, we address the impacts of herbicide reduction following a causal framework starting with herbicide reduction and triggering changes in (i) the management options required to control weeds, (ii) the weed communities and functions they provide and (iii) the overall performance and sustainability of the implemented land management options. The three components of this framework were analysed in a multidisciplinary project that was conducted on 55 experimental and farmer's fields that included conventional, integrated and organic cropping systems. Our results indicate that the reduction of herbicide use is not antagonistic with crop production, provided that alternative practices are put into place. Herbicide reduction and associated land management modified the composition of in-field weed communities and thus the functions of weeds related to biodiversity and production. Through a long-term simulation of weed communities based on alternative (?) cropping systems, some specific management pathways were identified that delivered high biodiversity gains and limited the negative impacts of weeds on crop production. Finally, the multi-criteria assessment of the environmental, economic and societal sustainability of the 55 systems suggests that integrated weed management systems fared better than their conventional and organic counterparts. These outcomes suggest that sustainable management could possibly be achieved through changes in weed management, along a pathway starting with herbicide reduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00267-015-0554-5 | DOI Listing |
Environ Toxicol Pharmacol
January 2025
Conservation Physiology Laboratory, Morphological Sciences Department, Postgraduate Program in Ecology and Evolution of Biodiversity, School of Health Sciences and Life, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil. Electronic address:
This study evaluated the effects of a glyphosate-based herbicide on the oxidative balance, energy metabolism, and body condition indices in tadpoles of Boana faber. Anuran spawns were collected, and after hatching and reaching Gosner stage 25, they were acclimated and exposed (168hours) to concentrations of glyphosate (G1: 65, G2: 260, and G3: 520µg/L). The body condition markers revealed a significant decrease in all these biomarkers in G2 and G3.
View Article and Find Full Text PDFTissue Cell
January 2025
Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
Bromoxynil (BML) is a toxic herbicide that is reported to cause various organ toxicities. However, there is not a single investigation conducted to elucidate the adverse impacts of BML on hepatic tissues at different dose concentrations. Therefore, the current investigation was planned to assess the deleterious effects of BML on liver against different dose concentrations.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK.
Long-term strategies are needed for the ecological restoration of land invaded by perennial weed species comprising of two parts: (1) control of the invasive species and (2) restoration of native vegetation meeting agricultural/conservation objectives. We investigated this within a statistically-rigorous, 28-year experiment at a site where Pteridium aquilinum had invaded an acid-grass/heathland. Where P.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China. Electronic address:
Ambrosia trifida is an invasive weed that destroys the local ecological environment, and causes a reduction in population diversity and grassland decline. The evolution of herbicide resistance has also increased the difficulty of managing A. trifida, so interspecific plant competition based on allelopathy has been used as an effective and sustainable ecological alternative.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Economics, University of Oregon, Eugene, OR 97403.
The advent of herbicide-tolerant genetically modified (GM) crops spurred rapid and widespread use of the herbicide glyphosate throughout US agriculture. In the two decades following GM-seeds' introduction, the volume of glyphosate applied in the United States increased by more than 750%. Despite this breadth and scale, science and policy remain unresolved regarding the effects of glyphosate on human health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!