The purpose of the present study was to investigate the possible association between temporal lobe epilepsy and NRG1 gene polymorphisms. A total of 73 patients and 69 controls were involved in this study. Genomic DNAs from the patients and controls were genotyped by polymerase chain reaction-ligase detection reaction method. There was an association of rs35753505 (T>C) with temporal lobe epilepsy (χ(2) = 6.730, P = .035). The frequency of risk allele C of rs35753505 was significantly higher (69.9%) in patients compared to controls (55.8%) (χ(2) = 6.023, P = .014). Interestingly, the significant difference of NRG1 genotype and allele frequency only existed among males, but not females. In addition, no statistically significant association was found between rs6994992, rs62510682 polymorphisms, and temporal lobe epilepsy. These data indicate that rs35753505 of NRG1 plays an important role in conferring susceptibility to the temporal lobe epilepsy in a Chinese Han population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0883073815589757 | DOI Listing |
Brain Struct Funct
January 2025
Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond Street, North London, ON, N6A 5C1, Canada.
The dual task cost of gait (DTC) is an accessible and cost-effective test that can help identify individuals with cognitive decline and dementia. However, its neural substrate has not been widely described. This study aims to investigate the neural substrate of the high DTC in older adults across the spectrum of cognitive decline.
View Article and Find Full Text PDFNeurophysiol Clin
January 2025
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China. Electronic address:
Objectives: In the present study with a large cohort, we aimed to characterize intracerebral seizure onset patterns (SOP) of mesial temporal lobe epilepsy (mTLE), with or without hippocampal sclerosis (HS) as identified via magnetic resonance imaging (MRI).
Methods: We retrospectively analyzed 255 seizures of 76 consecutive patients with mTLE explored by stereoelectroencephalography (SEEG), including HS-mTLE (n = 52) and non-HS- mTLE (n = 24). Relevant results were obtained by a combination of spectral analysis and manual review.
Epilepsia
January 2025
Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Objective: Epilepsy surgery outcomes tend to be judged by the percentage in seizure reduction without considering the effect on specific seizure types, particularly tonic-clonic seizures, which produce the greatest morbidity and mortality. We assess how often focal to bilateral tonic-clonic seizures (BTCS) stop and how often they appear de novo after epilepsy surgery.
Methods: Analysis of a prospectively maintained epilepsy surgery database between 1986 and 2022 that characterizes the burden of BTCS after resective epilepsy surgery.
PLoS One
January 2025
Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
Seizures elicited by corneal 6-Hz stimulation are widely acknowledged as a model of temporal lobe seizures. Despite the intensive research in rodents, no studies hint at this model in developing animals. We focused on seven age groups of both male and female rats.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Allen Institute for Brain Science, Seattle, WA, USA.
Background: Applying single-cell RNA sequencing (scRNA-seq) to the study of neurodegenerative disease has propelled the field towards a more refined cellular understanding of Alzheimer's disease (AD); however, directly linking protein pathology to transcriptomic changes has not been possible at scale. Recently, a high-throughput method was developed to generate high-quality scRNA-seq data while retaining cytoplasmic proteins. Tau is a cytoplasmic protein and when hyperphosphorylated is integrally involved in AD progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!